• 제목/요약/키워드: Neural Network Learning

Search Result 4,228, Processing Time 0.033 seconds

Composite adaptive neural network controller for nonlinear systems (비선형 시스템제어를 위한 복합적응 신경회로망)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

Soft Ground Settlement Estimation Using Neural Network (인공신경망을 이용한 연약지반 침하량 산정)

  • Roh, Jae-Ho;Won, Hyeo-Jea;Oh, Doo-Hwan;Hwang, Sun-Geun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1405-1410
    • /
    • 2006
  • Purpose of this research is that offers basic data for optimized design using neural network method to calculate consolidation settlement in study area. In this research, preformed the neural network method that analyzed the settlement characteristics of soft ground nearby study area. Thus, data base established on ground properties and consolidation settlement of neighboring area. In addition, designed the optimum neural network model for prediction of settlement through network learning and consolidation settlement prediction using consolidation settlement DB and ground properties DB. Optimized neural network model decided by repeated learning for various case of hidden layers. In this study, proposed that the optimized consolidation settlement calculation method using neural network and verified which is the optimized consolidation settlement calculation method using neural network.

  • PDF

Artificial Neural Network: Understanding the Basic Concepts without Mathematics

  • Han, Su-Hyun;Kim, Ko Woon;Kim, SangYun;Youn, Young Chul
    • Dementia and Neurocognitive Disorders
    • /
    • v.17 no.3
    • /
    • pp.83-89
    • /
    • 2018
  • Machine learning is where a machine (i.e., computer) determines for itself how input data is processed and predicts outcomes when provided with new data. An artificial neural network is a machine learning algorithm based on the concept of a human neuron. The purpose of this review is to explain the fundamental concepts of artificial neural networks.

Learning of Differential Neural Networks Based on Kalman-Bucy Filter Theory (칼만-버쉬 필터 이론 기반 미분 신경회로망 학습)

  • Cho, Hyun-Cheol;Kim, Gwan-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.777-782
    • /
    • 2011
  • Neural network technique is widely employed in the fields of signal processing, control systems, pattern recognition, etc. Learning of neural networks is an important procedure to accomplish dynamic system modeling. This paper presents a novel learning approach for differential neural network models based on the Kalman-Bucy filter theory. We construct an augmented state vector including original neural state and parameter vectors and derive a state estimation rule avoiding gradient function terms which involve to the conventional neural learning methods such as a back-propagation approach. We carry out numerical simulation to evaluate the proposed learning approach in nonlinear system modeling. By comparing to the well-known back-propagation approach and Kalman-Bucy filtering, its superiority is additionally proved under stochastic system environments.

Forecasting Sow's Productivity using the Machine Learning Models (머신러닝을 활용한 모돈의 생산성 예측모델)

  • Lee, Min-Soo;Choe, Young-Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.4
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

The Parameter Learning Method for Similar Image Rating Using Pulse Coupled Neural Network

  • Matsushima, Hiroki;Kurokawa, Hiroaki
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.155-160
    • /
    • 2016
  • The Pulse Coupled Neural Network (PCNN) is a kind of neural network models that consists of spiking neurons and local connections. The PCNN was originally proposed as a model that can reproduce the synchronous phenomena of the neurons in the cat visual cortex. Recently, the PCNN has been applied to the various image processing applications, e.g., image segmentation, edge detection, pattern recognition, and so on. The method for the image matching using the PCNN had been proposed as one of the valuable applications of the PCNN. In this method, the Genetic Algorithm is applied to the PCNN parameter learning for the image matching. In this study, we propose the method of the similar image rating using the PCNN. In our method, the Genetic Algorithm based method is applied to the parameter learning of the PCNN. We show the performance of our method by simulations. From the simulation results, we evaluate the efficiency and the general versatility of our parameter learning method.

Analysis of the fokker-plank equation for the dynamics of langevine cometitive learning neural network (Fokker-plank 방정식의 해석을 통한 Langevine 경쟁학습의 동역학 분석)

  • 석진욱;조성원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.82-91
    • /
    • 1997
  • In this paper, we analyze the dynamics of langevine competitive learning neural network based on its fokker-plank equation. From the viewpont of the stochastic differential equation (SDE), langevine competitive learning equation is one of langevine stochastic differential equation and has the diffusin equation on the topological space (.ohm., F, P) with probability measure. We derive the fokker-plank equation from the proposed algorithm and prove by introducing a infinitestimal operator for markov semigroups, that the weight vector in the particular simplex can converge to the globally optimal point under the condition of some convex or pseudo-convex performance measure function. Experimental resutls for pattern recognition of the remote sensing data indicate the superiority of langevine competitive learning neural network in comparison to the conventional competitive learning neural network.

  • PDF

Learning control of a robot manipulator using neural networks (신경 회로망을 사용한 로보트 매니퓰레이터의 학습 제어)

  • 경계현;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.30-35
    • /
    • 1990
  • Learning control of a robot manipulator is proposed using the backpropagation neural network. The learning controller is composed of both a linear feedback controller and a neural network-based feedforward controller. The stability analysis of the learning controller is presented. Three energy functions are selected in teaching the neural network controller : 1/2.SIGMA.vertical bar torque error vertical bar $^{2}$, 1/2.SIGMA..alpha. vertical bar position error vertical bar $^{2}$ + .betha. vertical bar velocity error vertical bar $^{2}$ + .gamma. vertical bar acceleration error vertical bar $^{2}$ and learning methods are presented. Simulation results show that the learning controller which is learned to minimize the third energy function performs better than the others in tracking problems. Some properties of the learning controller are discussed with simulation results.

  • PDF

Sound event classification using deep neural network based transfer learning (깊은 신경망 기반의 전이학습을 이용한 사운드 이벤트 분류)

  • Lim, Hyungjun;Kim, Myung Jong;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • Deep neural network that effectively capture the characteristics of data has been widely used in various applications. However, the amount of sound database is often insufficient for learning the deep neural network properly, so resulting in overfitting problems. In this paper, we propose a transfer learning framework that can effectively train the deep neural network even with insufficient sound event data by employing rich speech or music data. A series of experimental results verify that proposed method performs significantly better than the baseline deep neural network that was trained only with small sound event data.

Call admission control for ATM networks using a sparse distributed memory (ATM 망에서 축약 분산 기억 장치를 사용한 호 수락 제어)

  • 권희용;송승준;최재우;황희영
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.1-8
    • /
    • 1998
  • In this paper, we propose a Neural Call Admission Control (CAC) method using a Sparse Distributed Memory(SDM). CAC is a key technology of TM network traffic control. It should be adaptable to the rapid and various changes of the ATM network environment. conventional approach to the ATM CAC requires network analysis in all cases. So, the optimal implementation is said to be very difficult. Therefore, neural approach have recently been employed. However, it does not mett the adaptability requirements. because it requires additional learning data tables and learning phase during CAC operation. We have proposed a neural network CAC method based on SDM that is more actural than conventioal approach to apply it to CAC. We compared it with previous neural network CAC method. It provides CAC with good adaptability to manage changes. Experimenatal results show that it has rapid adaptability and stability without additional learning table or learning phase.

  • PDF