• Title/Summary/Keyword: Neural Net

Search Result 766, Processing Time 0.023 seconds

Incremental Image Noise Reduction in Coronary CT Angiography Using a Deep Learning-Based Technique with Iterative Reconstruction

  • Jung Hee Hong;Eun-Ah Park;Whal Lee;Chulkyun Ahn;Jong-Hyo Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.10
    • /
    • pp.1165-1177
    • /
    • 2020
  • Objective: To assess the feasibility of applying a deep learning-based denoising technique to coronary CT angiography (CCTA) along with iterative reconstruction for additional noise reduction. Materials and Methods: We retrospectively enrolled 82 consecutive patients (male:female = 60:22; mean age, 67.0 ± 10.8 years) who had undergone both CCTA and invasive coronary artery angiography from March 2017 to June 2018. All included patients underwent CCTA with iterative reconstruction (ADMIRE level 3, Siemens Healthineers). We developed a deep learning based denoising technique (ClariCT.AI, ClariPI), which was based on a modified U-net type convolutional neural net model designed to predict the possible occurrence of low-dose noise in the originals. Denoised images were obtained by subtracting the predicted noise from the originals. Image noise, CT attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were objectively calculated. The edge rise distance (ERD) was measured as an indicator of image sharpness. Two blinded readers subjectively graded the image quality using a 5-point scale. Diagnostic performance of the CCTA was evaluated based on the presence or absence of significant stenosis (≥ 50% lumen reduction). Results: Objective image qualities (original vs. denoised: image noise, 67.22 ± 25.74 vs. 52.64 ± 27.40; SNR [left main], 21.91 ± 6.38 vs. 30.35 ± 10.46; CNR [left main], 23.24 ± 6.52 vs. 31.93 ± 10.72; all p < 0.001) and subjective image quality (2.45 ± 0.62 vs. 3.65 ± 0.60, p < 0.001) improved significantly in the denoised images. The average ERDs of the denoised images were significantly smaller than those of originals (0.98 ± 0.08 vs. 0.09 ± 0.08, p < 0.001). With regard to diagnostic accuracy, no significant differences were observed among paired comparisons. Conclusion: Application of the deep learning technique along with iterative reconstruction can enhance the noise reduction performance with a significant improvement in objective and subjective image qualities of CCTA images.

A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle (상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구)

  • Kim, JunSeob;Rim, BeanBonyka;Sung, Nak-Jun;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 2020
  • Biometric information indicating measurement items related to human characteristics has attracted great attention as security technology with high reliability since there is no fear of theft or loss. Among these biometric information, fingerprints are mainly used in fields such as identity verification and identification. If there is a problem such as a wound, wrinkle, or moisture that is difficult to authenticate to the fingerprint image when identifying the identity, the fingerprint expert can identify the problem with the fingerprint directly through the preprocessing step, and apply the image processing algorithm appropriate to the problem. Solve the problem. In this case, by implementing artificial intelligence software that distinguishes fingerprint images with cuts and wrinkles on the fingerprint, it is easy to check whether there are cuts or wrinkles, and by selecting an appropriate algorithm, the fingerprint image can be easily improved. In this study, we developed a total of 17,080 fingerprint databases by acquiring all finger prints of 1,010 students from the Royal University of Cambodia, 600 Sokoto open data sets, and 98 Korean students. In order to determine if there are any injuries or wrinkles in the built database, criteria were established, and the data were validated by experts. The training and test datasets consisted of Cambodian data and Sokoto data, and the ratio was set to 8: 2. The data of 98 Korean students were set up as a validation data set. Using the constructed data set, five CNN-based architectures such as Classic CNN, AlexNet, VGG-16, Resnet50, and Yolo v3 were implemented. A study was conducted to find the model that performed best on the readings. Among the five architectures, ResNet50 showed the best performance with 81.51%.

Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images (딥러닝을 활용한 고대 수막새 이미지 분류 검토)

  • KIM Younghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.24-35
    • /
    • 2024
  • Recently, research using deep learning technologies such as artificial intelligence, convolutional neural networks, etc. has been actively conducted in various fields including healthcare, manufacturing, autonomous driving, and security, and is having a significant influence on society. In line with this trend, the present study attempted to apply deep learning to the classification of archaeological artifacts, specifically ancient Korean roof-end tiles. Using 100 images of roof-end tiles from each of the Goguryeo, Baekje, and Silla dynasties, for a total of 300 base images, a dataset was formed and expanded to 1,200 images using data augmentation techniques. After building a model using transfer learning from the pre-trained EfficientNetB0 model and conducting five-fold cross-validation, an average training accuracy of 98.06% and validation accuracy of 97.08% were achieved. Furthermore, when model performance was evaluated with a test dataset of 240 images, it could classify the roof-end tile images from the three dynasties with a minimum accuracy of 91%. In particular, with a learning rate of 0.0001, the model exhibited the highest performance, with accuracy of 92.92%, precision of 92.96%, recall of 92.92%, and F1 score of 92.93%. This optimal result was obtained by preventing overfitting and underfitting issues using various learning rate settings and finding the optimal hyperparameters. The study's findings confirm the potential for applying deep learning technologies to the classification of Korean archaeological materials, which is significant. Additionally, it was confirmed that the existing ImageNet dataset and parameters could be positively applied to the analysis of archaeological data. This approach could lead to the creation of various models for future archaeological database accumulation, the use of artifacts in museums, and classification and organization of artifacts.

Semantic Segmentation of Drone Imagery Using Deep Learning for Seagrass Habitat Monitoring (잘피 서식지 모니터링을 위한 딥러닝 기반의 드론 영상 의미론적 분할)

  • Jeon, Eui-Ik;Kim, Seong-Hak;Kim, Byoung-Sub;Park, Kyung-Hyun;Choi, Ock-In
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.199-215
    • /
    • 2020
  • A seagrass that is marine vascular plants plays an important role in the marine ecosystem, so periodic monitoring ofseagrass habitatsis being performed. Recently, the use of dronesthat can easily acquire very high-resolution imagery is increasing to efficiently monitor seagrass habitats. And deep learning based on a convolutional neural network has shown excellent performance in semantic segmentation. So, studies applied to deep learning models have been actively conducted in remote sensing. However, the segmentation accuracy was different due to the hyperparameter, various deep learning models and imagery. And the normalization of the image and the tile and batch size are also not standardized. So,seagrass habitats were segmented from drone-borne imagery using a deep learning that shows excellent performance in this study. And it compared and analyzed the results focused on normalization and tile size. For comparison of the results according to the normalization, tile and batch size, a grayscale image and grayscale imagery converted to Z-score and Min-Max normalization methods were used. And the tile size isincreased at a specific interval while the batch size is allowed the memory size to be used as much as possible. As a result, IoU was 0.26 ~ 0.4 higher than that of Z-score normalized imagery than other imagery. Also, it wasfound that the difference to 0.09 depending on the tile and batch size. The results were different according to the normalization, tile and batch. Therefore, this experiment found that these factors should have a suitable decision process.

Evaluation of Transfer Learning in Gastroscopy Image Classification using Convolutional Neual Network (합성곱 신경망을 활용한 위내시경 이미지 분류에서 전이학습의 효용성 평가)

  • Park, Sung Jin;Kim, Young Jae;Park, Dong Kyun;Chung, Jun Won;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.213-219
    • /
    • 2018
  • Stomach cancer is the most diagnosed cancer in Korea. When gastric cancer is detected early, the 5-year survival rate is as high as 90%. Gastroscopy is a very useful method for early diagnosis. But the false negative rate of gastric cancer in the gastroscopy was 4.6~25.8% due to the subjective judgment of the physician. Recently, the image classification performance of the image recognition field has been advanced by the convolutional neural network. Convolutional neural networks perform well when diverse and sufficient amounts of data are supported. However, medical data is not easy to access and it is difficult to gather enough high-quality data that includes expert annotations. So This paper evaluates the efficacy of transfer learning in gastroscopy classification and diagnosis. We obtained 787 endoscopic images of gastric endoscopy at Gil Medical Center, Gachon University. The number of normal images was 200, and the number of abnormal images was 587. The image size was reconstructed and normalized. In the case of the ResNet50 structure, the classification accuracy before and after applying the transfer learning was improved from 0.9 to 0.947, and the AUC was also improved from 0.94 to 0.98. In the case of the InceptionV3 structure, the classification accuracy before and after applying the transfer learning was improved from 0.862 to 0.924, and the AUC was also improved from 0.89 to 0.97. In the case of the VGG16 structure, the classification accuracy before and after applying the transfer learning was improved from 0.87 to 0.938, and the AUC was also improved from 0.89 to 0.98. The difference in the performance of the CNN model before and after transfer learning was statistically significant when confirmed by T-test (p < 0.05). As a result, transfer learning is judged to be an effective method of medical data that is difficult to collect good quality data.

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.

Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset (실생활 음향 데이터 기반 이중 CNN 구조를 특징으로 하는 음향 이벤트 인식 알고리즘)

  • Suh, Sangwon;Lim, Wootaek;Jeong, Youngho;Lee, Taejin;Kim, Hui Yong
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.855-865
    • /
    • 2018
  • Sound event detection is one of the research areas to model human auditory cognitive characteristics by recognizing events in an environment with multiple acoustic events and determining the onset and offset time for each event. DCASE, a research group on acoustic scene classification and sound event detection, is proceeding challenges to encourage participation of researchers and to activate sound event detection research. However, the size of the dataset provided by the DCASE Challenge is relatively small compared to ImageNet, which is a representative dataset for visual object recognition, and there are not many open sources for the acoustic dataset. In this study, the sound events that can occur in indoor and outdoor are collected on a larger scale and annotated for dataset construction. Furthermore, to improve the performance of the sound event detection task, we developed a dual CNN structured sound event detection system by adding a supplementary neural network to a convolutional neural network to determine the presence of sound events. Finally, we conducted a comparative experiment with both baseline systems of the DCASE 2016 and 2017.

Deep Learning Similarity-based 1:1 Matching Method for Real Product Image and Drawing Image

  • Han, Gi-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.59-68
    • /
    • 2022
  • This paper presents a method for 1:1 verification by comparing the similarity between the given real product image and the drawing image. The proposed method combines two existing CNN-based deep learning models to construct a Siamese Network. After extracting the feature vector of the image through the FC (Fully Connected) Layer of each network and comparing the similarity, if the real product image and the drawing image (front view, left and right side view, top view, etc) are the same product, the similarity is set to 1 for learning and, if it is a different product, the similarity is set to 0. The test (inference) model is a deep learning model that queries the real product image and the drawing image in pairs to determine whether the pair is the same product or not. In the proposed model, through a comparison of the similarity between the real product image and the drawing image, if the similarity is greater than or equal to a threshold value (Threshold: 0.5), it is determined that the product is the same, and if it is less than or equal to, it is determined that the product is a different product. The proposed model showed an accuracy of about 71.8% for a query to a product (positive: positive) with the same drawing as the real product, and an accuracy of about 83.1% for a query to a different product (positive: negative). In the future, we plan to conduct a study to improve the matching accuracy between the real product image and the drawing image by combining the parameter optimization study with the proposed model and adding processes such as data purification.

Seismic Fragility of I-Shape Curved Steel Girder Bridge using Machine Learning Method (머신러닝 기반 I형 곡선 거더 단경간 교량 지진 취약도 분석)

  • Juntai Jeon;Bu-Seog Ju;Ho-Young Son
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.899-907
    • /
    • 2022
  • Purpose: Although many studies on seismic fragility analysis of general bridges have been conducted using machine learning methods, studies on curved bridge structures are insignificant. Therefore, the purpose of this study is to analyze the seismic fragility of bridges with I-shaped curved girders based on the machine learning method considering the material property and geometric uncertainties. Method: Material properties and pier height were considered as uncertainty parameters. Parameters were sampled using the Latin hypercube technique and time history analysis was performed considering the seismic uncertainty. Machine learning data was created by applying artificial neural network and response surface analysis method to the original data. Finally, earthquake fragility analysis was performed using original data and learning data. Result: Parameters were sampled using the Latin hypercube technique, and a total of 160 time history analyzes were performed considering the uncertainty of the earthquake. The analysis result and the predicted value obtained through machine learning were compared, and the coefficient of determination was compared to compare the similarity between the two values. The coefficient of determination of the response surface method was 0.737, which was relatively similar to the observed value. The seismic fragility curve also showed that the predicted value through the response surface method was similar to the observed value. Conclusion: In this study, when the observed value through the finite element analysis and the predicted value through the machine learning method were compared, it was found that the response surface method predicted a result similar to the observed value. However, both machine learning methods were found to underestimate the observed values.

Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets

  • Mengqi Wu;Xu Liu;Nan Gui;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang;Qian Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.339-352
    • /
    • 2023
  • Prediction of the time-related traits of pebble flow inside pebble-bed HTGRs is of great significance for reactor operation and design. In this work, an image-driven approach with the aid of a convolutional neural network (CNN) is proposed to predict the remaining time of initially loaded pebbles and the time interval of paired flow images of the pebble bed. Two types of strategies are put forward: one is adding FC layers to the classic classification CNN models and using regression training, and the other is CNN-based deep expectation (DEX) by regarding the time prediction as a deep classification task followed by softmax expected value refinements. The current dataset is obtained from the discrete element method (DEM) simulations. Results show that the CNN-aided models generally make satisfactory predictions on the remaining time with the determination coefficient larger than 0.99. Among these models, the VGG19+DEX performs the best and its CumScore (proportion of test set with prediction error within 0.5s) can reach 0.939. Besides, the remaining time of additional test sets and new cases can also be well predicted, indicating good generalization ability of the model. In the task of predicting the time interval of image pairs, the VGG19+DEX model has also generated satisfactory results. Particularly, the trained model, with promising generalization ability, has demonstrated great potential in accurately and instantaneously predicting the traits of interest, without the need for additional computational intensive DEM simulations. Nevertheless, the issues of data diversity and model optimization need to be improved to achieve the full potential of the CNN-aided prediction tool.