• Title/Summary/Keyword: Neural Net

검색결과 750건 처리시간 0.028초

Development of ResNet based Crop Growth Stage Estimation Model (ResNet 기반 작물 생육단계 추정 모델 개발)

  • Park, Jun;Kim, June-Yeong;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • 제11권2호
    • /
    • pp.53-62
    • /
    • 2022
  • Due to the accelerated global warming phenomenon after industrialization, the frequency of changes in the existing environment and abnormal climate is increasing. Agriculture is an industry that is very sensitive to climate change, and global warming causes problems such as reducing crop yields and changing growing regions. In addition, environmental changes make the growth period of crops irregular, making it difficult for even experienced farmers to easily estimate the growth stage of crops, thereby causing various problems. Therefore, in this paper, we propose a CNN model for estimating the growth stage of crops. The proposed model was a model that modified the pooling layer of ResNet, and confirmed the accuracy of higher performance than the growth stage estimation of the ResNet and DenseNet models.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

Robust Feature Selection and Shot Change Detection Method Using the Neural Networks (강인한 특징 변수 선별과 신경망을 이용한 장면 전환점 검출 기법)

  • Hong, Seung-Bum;Hong, Gyo-Young
    • Journal of Korea Multimedia Society
    • /
    • 제7권7호
    • /
    • pp.877-885
    • /
    • 2004
  • In this paper, we propose an enhancement shot change detection method using the neural net and the robust feature selection out of multiple features. The previous shot change detection methods usually used single feature and fixed threshold between consecutive frames. However, contents such as color, shape, background, and texture change simultaneously at shot change points in a video sequence. Therefore, in this paper, we detect the shot changes effectively using robust features, which are supplementary each other, rather than using single feature. In this paper, we use the typical CART (classification and regression tree) of data mining method to select the robust features, and the backpropagation neural net to determine the threshold of the each selected features. And to evaluation the performance of the robust feature selection, we compare the proposed method to the PCA(principal component analysis) method of the typical feature selection. According to the experimental result. it was revealed that the performance of our method had better that than the PCA method.

  • PDF

A Deep Neural Network Architecture for Real-Time Semantic Segmentation on Embedded Board (임베디드 보드에서 실시간 의미론적 분할을 위한 심층 신경망 구조)

  • Lee, Junyeop;Lee, Youngwan
    • Journal of KIISE
    • /
    • 제45권1호
    • /
    • pp.94-98
    • /
    • 2018
  • We propose Wide Inception ResNet (WIR Net) an optimized neural network architecture as a real-time semantic segmentation method for autonomous driving. The neural network architecture consists of an encoder that extracts features by applying a residual connection and inception module, and a decoder that increases the resolution by using transposed convolution and a low layer feature map. We also improved the performance by applying an ELU activation function and optimized the neural network by reducing the number of layers and increasing the number of filters. The performance evaluations used an NVIDIA Geforce GTX 1080 and TX1 boards to assess the class and category IoU for cityscapes data in the driving environment. The experimental results show that the accuracy of class IoU 53.4, category IoU 81.8 and the execution speed of $640{\times}360$, $720{\times}480$ resolution image processing 17.8fps and 13.0fps on TX1 board.

Performance Enhancement of Automatic Wood Classification of Korean Softwood by Ensembles of Convolutional Neural Networks

  • Kwon, Ohkyung;Lee, Hyung Gu;Yang, Sang-Yun;Kim, Hyunbin;Park, Se-Yeong;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권3호
    • /
    • pp.265-276
    • /
    • 2019
  • In our previous study, the LeNet3 model successfully classified images from the transverse surfaces of five Korean softwood species (cedar, cypress, Korean pine, Korean red pine, and larch). However, a practical limitation exists in our system stemming from the nature of the training images obtained from the transverse plane of the wood species. In real-world applications, it is necessary to utilize images from the longitudinal surfaces of lumber. Thus, we improved our model by training it with images from the longitudinal and transverse surfaces of lumber. Because the longitudinal surface has complex but less distinguishable features than the transverse surface, the classification performance of the LeNet3 model decreases when we include images from the longitudinal surfaces of the five Korean softwood species. To remedy this situation, we adopt ensemble methods that can enhance the classification performance. Herein, we investigated the use of ensemble models from the LeNet and MiniVGGNet models to automatically classify the transverse and longitudinal surfaces of the five Korean softwoods. Experimentally, the best classification performance was achieved via an ensemble model comprising the LeNet2, LeNet3, and MiniVGGNet4 models trained using input images of $128{\times}128{\times}3pixels$ via the averaging method. The ensemble model showed an F1 score greater than 0.98. The classification performance for the longitudinal surfaces of Korean pine and Korean red pine was significantly improved by the ensemble model compared to individual convolutional neural network models such as LeNet3.

A study on training DenseNet-Recurrent Neural Network for sound event detection (음향 이벤트 검출을 위한 DenseNet-Recurrent Neural Network 학습 방법에 관한 연구)

  • Hyeonjin Cha;Sangwook Park
    • The Journal of the Acoustical Society of Korea
    • /
    • 제42권5호
    • /
    • pp.395-401
    • /
    • 2023
  • Sound Event Detection (SED) aims to identify not only sound category but also time interval for target sounds in an audio waveform. It is a critical technique in field of acoustic surveillance system and monitoring system. Recently, various models have introduced through Detection and Classification of Acoustic Scenes and Events (DCASE) Task 4. This paper explored how to design optimal parameters of DenseNet based model, which has led to outstanding performance in other recognition system. In experiment, DenseRNN as an SED model consists of DensNet-BC and bi-directional Gated Recurrent Units (GRU). This model is trained with Mean teacher model. With an event-based f-score, evaluation is performed depending on parameters, related to model architecture as well as model training, under the assessment protocol of DCASE task4. Experimental result shows that the performance goes up and has been saturated to near the best. Also, DenseRNN would be trained more effectively without dropout technique.

Performance Comparison of Commercial and Customized CNN for Detection in Nodular Lung Cancer (결절성 폐암 검출을 위한 상용 및 맞춤형 CNN의 성능 비교)

  • Park, Sung-Wook;Kim, Seunghyun;Lim, Su-Chang;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • 제23권6호
    • /
    • pp.729-737
    • /
    • 2020
  • Screening with low-dose spiral computed tomography (LDCT) has been shown to reduce lung cancer mortality by about 20% when compared to standard chest radiography. One of the problems arising from screening programs is that large amounts of CT image data must be interpreted by radiologists. To solve this problem, automated detection of pulmonary nodules is necessary; however, this is a challenging task because of the high number of false positive results. Here we demonstrate detection of pulmonary nodules using six off-the-shelf convolutional neural network (CNN) models after modification of the input/output layers and end-to-end training based on publicly databases for comparative evaluation. We used the well-known CNN models, LeNet-5, VGG-16, GoogLeNet Inception V3, ResNet-152, DensNet-201, and NASNet. Most of the CNN models provided superior results to those of obtained using customized CNN models. It is more desirable to modify the proven off-the-shelf network model than to customize the network model to detect the pulmonary nodules.

Wood Classification of Japanese Fagaceae using Partial Sample Area and Convolutional Neural Networks

  • FATHURAHMAN, Taufik;GUNAWAN, P.H.;PRAKASA, Esa;SUGIYAMA, Junji
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권5호
    • /
    • pp.491-503
    • /
    • 2021
  • Wood identification is regularly performed by observing the wood anatomy, such as colour, texture, fibre direction, and other characteristics. The manual process, however, could be time consuming, especially when identification work is required at high quantity. Considering this condition, a convolutional neural networks (CNN)-based program is applied to improve the image classification results. The research focuses on the algorithm accuracy and efficiency in dealing with the dataset limitations. For this, it is proposed to do the sample selection process or only take a small portion of the existing image. Still, it can be expected to represent the overall picture to maintain and improve the generalisation capabilities of the CNN method in the classification stages. The experiments yielded an incredible F1 score average up to 93.4% for medium sample area sizes (200 × 200 pixels) on each CNN architecture (VGG16, ResNet50, MobileNet, DenseNet121, and Xception based). Whereas DenseNet121-based architecture was found to be the best architecture in maintaining the generalisation of its model for each sample area size (100, 200, and 300 pixels). The experimental results showed that the proposed algorithm can be an accurate and reliable solution.

Landmark Selection Using CNN-Based Heat Map for Facial Age Prediction (안면 연령 예측을 위한 CNN기반의 히트 맵을 이용한 랜드마크 선정)

  • Hong, Seok-Mi;Yoo, Hyun
    • Journal of Convergence for Information Technology
    • /
    • 제11권7호
    • /
    • pp.1-6
    • /
    • 2021
  • The purpose of this study is to improve the performance of the artificial neural network system for facial image analysis through the image landmark selection technique. For landmark selection, a CNN-based multi-layer ResNet model for classification of facial image age is required. From the configured ResNet model, a heat map that detects the change of the output node according to the change of the input node is extracted. By combining a plurality of extracted heat maps, facial landmarks related to age classification prediction are created. The importance of each pixel location can be analyzed through facial landmarks. In addition, by removing the pixels with low weights, a significant amount of input data can be reduced.

PartitionTuner: An operator scheduler for deep-learning compilers supporting multiple heterogeneous processing units

  • Misun Yu;Yongin Kwon;Jemin Lee;Jeman Park;Junmo Park;Taeho Kim
    • ETRI Journal
    • /
    • 제45권2호
    • /
    • pp.318-328
    • /
    • 2023
  • Recently, embedded systems, such as mobile platforms, have multiple processing units that can operate in parallel, such as centralized processing units (CPUs) and neural processing units (NPUs). We can use deep-learning compilers to generate machine code optimized for these embedded systems from a deep neural network (DNN). However, the deep-learning compilers proposed so far generate codes that sequentially execute DNN operators on a single processing unit or parallel codes for graphic processing units (GPUs). In this study, we propose PartitionTuner, an operator scheduler for deep-learning compilers that supports multiple heterogeneous PUs including CPUs and NPUs. PartitionTuner can generate an operator-scheduling plan that uses all available PUs simultaneously to minimize overall DNN inference time. Operator scheduling is based on the analysis of DNN architecture and the performance profiles of individual and group operators measured on heterogeneous processing units. By the experiments for seven DNNs, PartitionTuner generates scheduling plans that perform 5.03% better than a static type-based operator-scheduling technique for SqueezeNet. In addition, PartitionTuner outperforms recent profiling-based operator-scheduling techniques for ResNet50, ResNet18, and SqueezeNet by 7.18%, 5.36%, and 2.73%, respectively.