• 제목/요약/키워드: Neural Classifier

검색결과 580건 처리시간 0.03초

Model-based fault diagnosis methodology using neural network and its application

  • Lee, In-Soo;Kim, Kwang-Tae;Cho, Won-Chul;Kim, Jung-Teak;Kim, Kyung-Youn;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.127.1-127
    • /
    • 2001
  • In this paper we propose an input/output model based fault diagnosis method to detect and isolate single faults in the robot arm control system. The proposed algorithm is functionally composed of three main parts-parameter estimation, fault detection, and isolation, When a change in the system occurs, the errors between the system output and the estimated output cross a predetermined threshold, and once a fault in the system is detected, and in this zone the estimated parameters are transferred to the fault classifier by ART2(adaptive resonance theory 2) neural network for fault isolation. Since ART2 neural network is an unsupervised neural network fault classifier does not require the knowledge of all possible faults to isolate the faults occurred in the system. Simulations are carried out to evaluate the performance of the proposed ...

  • PDF

신경망과 전이학습 기반 표면 결함 분류에 관한 연구 (A Study on the Classification of Surface Defect Based on Deep Convolution Network and Transfer-learning)

  • 김성주;김경범
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.64-69
    • /
    • 2021
  • In this paper, a method for improving the defect classification performance in low contrast, ununiformity and featureless steel plate surfaces has been studied based on deep convolution neural network and transfer-learning neural network. The steel plate surface images have low contrast, ununiformity, and featureless, so that the contrast between defect and defect-free regions are not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. A classifier based on a deep convolution neural network is constructed to extract features automatically for effective classification of images with these characteristics. As results of the experiment, AlexNet-based transfer-learning classifier showed excellent classification performance of 99.43% with less than 160 seconds of training time. The proposed classification system showed excellent classification performance for low contrast, ununiformity, and featureless surface images.

깊은신경망을 이용한 회전객체 분류 연구 (A Study on Rotating Object Classification using Deep Neural Networks)

  • 이용규;이일병
    • 한국지능시스템학회논문지
    • /
    • 제25권5호
    • /
    • pp.425-430
    • /
    • 2015
  • 본 논문은 딥러닝 알고리즘을 적용한 깊은신경망을 이용하여 회전 객체의 분류 효율성을 높이기 위한 연구이다. 회전객체의 분류 실험을 위하여 데이터는 COIL-20을 사용하며 객체의 2/3영역을 학습시키고 1/3영역을 유추하여 분류한다. 연구에 이용된 3가지 분류기는 주성분 분석법을 이용해 데이터의 차원을 축소하면서 특징값을 추출하고 유클리디안 거리를 이용하여 분류하는 PCA분류기와 오류역전파 알고리즘을 이용하여 오류 에너지를 줄여가는 방식의 MLP분류기, 마지막으로 pre-training을 통하여 학습데이터의 관찰될 확률을 높여주고 fine-tuning으로 오류에너지를 줄여가는 방식의 딥러닝을 적용한 DBN분류기이다. 깊은신경망의 구조별 오류율을 확인하기 위하여 은닉층의 개수와 은닉뉴런의 개수를 변경해가며 실험하고 실제로 가장 낮은 오류율을 나타내는 구조를 기술한다. 가장 낮은 오류율을 보였던 분류기는 DBN을 이용한 분류기이다. 은닉층을 2개 갖는 깊은신경망의 구조로 매개 변수들을 인식에 도움이 되는 곳으로 이동 시켜 높은 인식률을 보여줬다.

스마트 그리드 배전계통에서 인공신경회로망을 이용한 DSP 기반 실시간 고장 판단 방법론 기초 연구 (DSP based Real-Time Fault Determination Methodology using Artificial Neural Network in Smart Grid Distribution System)

  • 김진언;이유림;최정우;노병훈;고윤석
    • 한국전자통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.817-826
    • /
    • 2023
  • 본 논문에서는 스마트 그리드 배전 계통에서 선로상의 고장으로부터 계통을 보호하기 위한 인공 신경 회로망을 기반으로 하는 고장 판단 방법론을 제안하였다. 제안된 방법론에서는 먼저 전류 실효값 크기를 기반으로 일반 고장 여부를 판단하고 다음, 정상 전류로 판단되는 경우 인공 신경 회로망을 기반으로 하는 normal/HIF classifier를 이용하여 고 임피던스 지락 고장 여부를 판단하도록 설계하였다. 반복적인 DSP 모듈 기반 알고리즘 검증 시험들 중에서, 실효 값 크기가 최소 동작전류보다 작은 정상 전류 파형 시험인 경우에 normal/HIF classifier가 전류 파형을 정상상태로 인식하여 부 동작하였으며, 반면에, 저 임피던스 고장의 경우는 고장 상태로 인식하여 정해진 절차에 따라 재폐로 동작을 보임으로써 제안된 방법론의 유효성을 확인할 수 있었다.

자기공명영상을 이용한 간경변 단계별 분류에 관한 연구 (Classification of Fall in Sick Times of Liver Cirrhosis using Magnetic Resonance Image)

  • 박병래;전계록
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제26권1호
    • /
    • pp.71-82
    • /
    • 2003
  • T1강조 자기공명영상과 계층적 신경회로망을 이용하여 간경변증을 단계별로 분류하고자 제안한다. 데이터는 2001년 6월부터 12월까지 부산대학교병원에서 얻었으며, 각 단계별 분류는 정상, 1, 2, 3단계별로 분류하였다. 그리고 46명의 데이터를 분석하였다. T1강조 자기공명 간영상으로부터 정상간 실질과 간경변 결절을 추출하였다. 그 다음에 T1강조 자기공명 간 영상에서 간 경화증의 단계를 객관적으로 해석 분류하였다. 간경변 분류기 구현은 계층적 신경회로망을 이용하였고, 명암도 분석과 간 결절 특성을 통하여 정상간과 3단계의 간경변으로 구분하였다. 제안한 신경회로망 분류기는 오류 역전과 알고리즘을 이용하였다. 분류결과 인식율이 정상군은 100%, 1 단계는 82.3%, 2 단계는 86.7%, 3 단계는 83.7%의 분류율을 나타내었다. 신경회로망 분류 결과와 전문의 판독 결과를 서로 비교한 결과 인식률은 매우 높게 나타났다. 만일 더욱더 충분한 데이터나 파라미터를 가지고 지속적으로 수행한다면 간경변 환자들에게 임상적으로 지원하는 도구뿐만 아니라 의료전문 신경회로망으로도 기대된다.

  • PDF

Promoter classification using random generator-controlled generalized regression neural network

  • Kim, Kunho;Kim, Byungwhan;Kim, Kyungnam;Hong, Jin-Han;Park, Sang-Ho
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.595-598
    • /
    • 2003
  • A new classifier is constructed by using a generalized regression neural network (GRNN) in conjunction with a random generator (RC). The RG played a role of generating a number of sets of random spreads given a range for gaussian functions in the pattern layer, The range experimentally varied from 0.4 to 1.4. The DNA sequences consisted 4 types of promoters. The performance of classifier is examined in terms of total classification sensitivity (TCS), and individual classification sensitivity (ICS). for comparisons, another GRNN classifier was constructed and optimized in conventional way. Compared GRNN, the RG-GRNN demonstrated much improved TCS along with better ICS on average.

  • PDF

칼라 컴퓨터시각을 이용(利用)한 활엽수(闊葉樹) 부재(部材)의 색(色)에 의한 선별(選別) (Color Grading of Hardwood Dimension Parts with Color Computer Vision)

  • 유수남;게리 쿠르쯔
    • Journal of Biosystems Engineering
    • /
    • 제18권3호
    • /
    • pp.288-295
    • /
    • 1993
  • 본 연구는 칼라 컴퓨터시각을 이용하여 가구에 이용되고 있는 활엽수 부재의 색에 의한 선별법을 제시하고자 수행되었다. 붉은 오우크 가구 부재를 대상으로 칼라 컴퓨터시각 시스템을 이용 화상을 얻은후 R,G,B 농도값을 근거로 나무결, 나무결함, 3가지의 색깔 즉 핑크색, 흰색, 갈색의 나무부분, 이밖에 배경에 대한 지식 베이스화를 행하여 각 부재에 대하여 이들의 비율을 quadratic Bayes classifier를 이용 구하였으며, 이 중 나무결, 나무결함, 배경을 제외한 3가지 색상에 대하여 부재가 갖는 상대적인 비율을 근거로 qadratic Bayes classifier와 neural network를 각각 이용하여 핑크색, 흰색, 갈색의 3가지 부재로 구분하였다. 선별의 정확도는 기존의 육안에 의한 선별을 기준으로 비교하였는데 qadratic Bayes classifier에 의한 선별이 91.7%, neural network을 이용한 선별이 96.7%의 높은 정확도를 보였다. 따라서 가구의 품질향상을 위한 색에 의한 부재 선별에 칼라 컴퓨터시각이 유용하게 이용될 수 있을 것으로 판단되었다.

  • PDF

수렴성 구조를 이용한 강인한 선행 신경망 구현 (Implementation of Robust Feedforward Neural Network Using Classifier Structure)

  • 김준석;서진헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.287-289
    • /
    • 1993
  • In this paper, we improve feedforward neural network performance by eliminating the effect of gross error using classifier structure. At first, we prove the output of classifier converges to the posteriori probability of each pattern given input x, $f_0({\theta}_1|x)$. And we apply filtering approach based on the robust statistics before reconstructing continuous output. The data distorted with noise can be rejected by this process. Finally, we suggest neurofilter structure. Simulation result shows that our structure yields consistent estimates even in the presence of noise.

  • PDF

카테고리분류를 위한 다층퍼셉트론 신경회로망과 최대유사법의 성능비교 (Performance Comparision of Multilayer Perceptron Nueral Network and Maximum Likelihood Classifier for Category Classification)

  • 임태훈;서용수
    • 대한공간정보학회지
    • /
    • 제4권2호
    • /
    • pp.137-147
    • /
    • 1996
  • 본 논문에서는 통계적 분류방법인 최대유사 분류법(MLC: maximum likelihood classifier)과 신경회로망을 이용한 분류법인 다층퍼셉트론(MLP: multiayer perceptron) 분류법간의 분류성능을 비교 평가하였으며, 또한 MLP 분류법에서 문제가 되고 있는 학습률(learning rate), 운동량 상수(,momentum constant), 은닉층의 노드수에 따른 MLP 분류법의 분류성능을 평가하였다. 부산지역에 대한 실제 인공위성 화상데이타인 Landsat TM 화상데이타를 사용하여 MLP 분류법과 MLC 분류법의 성능을 비교한 결과 MLP 분류법의 성능이 더 우사함을 확인할 수 있었으며, 학습률, 운동량 상수 및 은닉층의 노드수에 따른 분류성능도 평가하였다.

  • PDF

패턴분류기를 위한 최소오차율 학습알고리즘과 예측신경회로망모델에의 적용 (A Minimum-Error-Rate Training Algorithm for Pattern Classifiers and Its Application to the Predictive Neural Network Models)

  • 나경민;임재열;안수길
    • 전자공학회논문지B
    • /
    • 제31B권12호
    • /
    • pp.108-115
    • /
    • 1994
  • Most pattern classifiers have been designed based on the ML (Maximum Likelihood) training algorithm which is simple and relatively powerful. The ML training is an efficient algorithm to individually estimate the model parameters of each class under the assumption that all class models in a classifier are statistically independent. That assumption, however, is not valid in many real situations, which degrades the performance of the classifier. In this paper, we propose a minimum-error-rate training algorithm based on the MAP (Maximum a Posteriori) approach. The algorithm regards the normalized outputs of the classifier as estimates of the a posteriori probability, and tries to maximize those estimates. According to Bayes decision theory, the proposed algorithm satisfies the condition of minimum-error-rate classificatin. We apply this algorithm to NPM (Neural Prediction Model) for speech recognition, and derive new disrminative training algorithms. Experimental results on ten Korean digits recognition have shown the reduction of 37.5% of the number of recognition errors.

  • PDF