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~Abstract - A new classifier is constructed by using a
generalized regression neural network (GRNN)
sonjunction with a random generator (RG). The RG

in

played a role of generating a number of sets of random
spreads given a range for gaussian functions in the
pattern layer. The range experimentally varied from 0.4
to 1.4. The DNA sequences consisted 4 types of promoters.
The performance of classifier is examined in terms of
total classification sensitivity (TCS), and individual
classification sensitivity (ICS). For comparisons, another
GRNN classifier was constructed and optimized in
conventional way. Compared GRNN, the RG-GRNN
demonstrated much improved TCS along with better ICS
on average.

1. Introduction

As a biometric, artificial neural network (ANN) has been
extensively applied to map and identify specific biological
“unctions in Deoxyribonucleic Acid (DNA) sequences [1-3].
ompared to other algorithms, ANN demonstrated superior
“unctional mapping ability. This is mainly attributed to the
ANN capability of high correlation and interpolation. Many
Jifferent types of neural networks have been applied
: assifying various DNA sequences. Among neural networks,
the generalized regression neural network [4] is increasingly
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expected due to its simple training algorithm and
optimization procedure. Despite its potential usefulness, the
GRNN has rarely been applied to predict or classify DNA
sequence little reported. The GRNN performance depends on
one training factor called “spread” of gaussian function.
Conventionally, the effect of the spread on GRNN predictive
performance is optimized by experimentally adjusting it.
Most critical problem is that all gaussian functions in the
pattern layer consist of the same one single spread. By
adopting multi-spreads, it is expected that the GRNN
predictive ability could be improved.

In this study, a technique to construct a GRNN classifier
of multi-valued spreads is presented. This is accomplished by
means of a random generator (RG). For convenience, the
RG-based GRNN is referred to-as RG-GRNN. The
performance of GRNN is evaluated in terms of the
classification sensitivity. Each measure is investigated for all
or individual promoter data set. The classification sensitivity
is more detailed with respect to the threshold. The RG-

GRNN is also compared to conventional GRNN.

2. DNA Promoter Data

The DNA data evaluated consist of 4 types of promoter,
including Oriza Sativa (OS), Arabidopsis Thaliana (AT),
Escherichia Coli (EC), and Zymomonas Mobils (ZM). The
first two promoters, OS and AT, can be classified into an



eukaryotic promoter. The other EC and ZM belong to
prokaryotic promoter. Promoter sequences for AT were
obtained by comparing full-length cDNAs [5] with a genomic
DNA [6]. Since DNA sequences upstream of the cDNAs
contain the promoter activity, approximately 1-kb genomic
DNA regions upstream of the translation start site (ATG
codon) were selected in constructing the database. The OS
promoter sequences were collected in the similar way using
the rice database [7]. Meanwhile, the whole genome
sequences of two bacterial species, the EC [8] and ZM were
obtained from NCBI with accession number U00096 and in-
house database of Macrogen, respectively. The open reading
frames (ORFs) from ZM were derived from the prediction by
using a program'Glimmer V2.0' [9] and analyzed
further with a BlastX [10] program with non-redundant
protein database of NCBI. For the two sets of genomic data, a
number of promoter sequence were collected by searching
promoters, and each sequence consisted of 500 bases
upstream and 100 bases downstream from the cordon start
site. The 600 bases per each ORF were thus used for
promoter prediction.

The training data consist of 115 sets of promoter
sequences. More specifically, the data is composed of 20 OS,
25 AT, 35 ET, and 35 ZM. The test data for evaluating model
appropriateness are composed of 58 sets of promoters, 13 OS,
15 AT, 15 ET, and 15 ZM. Each sequence pattern consisted of
146 base pairs.
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Figure 1: Schematic of generalized regression neural network
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3. Generalized Regression Neural Network

A schematic of GRNN is depicted in Fig. 1. As shown in

Fig. 1, the GRNN consists of four layers, including the input
layer, pattern layer, summation layer, and output layer. Each
input unit in the first layer corresponds to individual process
parameter. The first layer is fully connected to the second,
pattern layer, where each unit represents a training pattern
and its output is a measure of the distance of the input from
the stored patterns. Each pattern layer unit is connected to the
two neurons in the summation layer: S-summation neuron
and D-summation neuron. The S-summation neuron
computes the sum of the weighted outputs of the pattern layer
while the D-summation neuron calculates the unweighted
outputs of the pattern neurons.

The connection weight between the ith neuron in the
pattern layer and the S-summation neuron is y;, the target
output value corresponding to the ith input pattern. For D-
summation neuron, the connection weight is unity. The
output layer merely divides the output of each S-summation
neuron by that of each D-summation neuron, yielding the
predicted value to an unknown input vector X as

=

2 y; exp[-D(x,x;)]

i=1 (1)
exp[-D(x,x;)]

1

i

;’i(x) =

=

where n indicates the number of training patterns and the D
function in (1) is defined as

p Xj X,
D(x,x;)= 2 (——) @
J=1 ¢

where p indicates the number of elements of an input

vector. The x; and X;, represent the jth element of x

and X, respectively. The { is generally referred to as the

spread, whose optimal value is conventionally determined by
adjusting it within certain experimental range.

4. Results

The performance of classifier is evaluated in terms of
the classification sensitivity. The classification sensitivity is
defined as the total number of the test sequence patterns
correctly classified into their respective classes. It is
evaluated as a function of the threshold expressed as

’dij —outijl ( Threshold (3)

where, d and outy represent the desired and calculated
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outputs of the ith output neuron for the jth test pattern. The
classification sensitivity is measured for all and individual
data sets, each called total classification sensitivity (TCS) and
individual classification sensitivity (ICS), respectively.
Meanwhile, the threshold varied from 0.6 to 0.9 with an
increment of 0.1.

Table I: ICS of GRNN with respect to the threshold

Threshold OS AT EC ZM TCS
09 6 0 4 4 14
0.8 6 0 4 5 15
0.7 6 0 5 5 16
0.6 6 0 5 5 16
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Figure 2: Total classification sensitivity of GRNN as a function
of spread.

4.1. Conventional GRNN

First, the performance of conventional GRNN is
investigated. The spread varied from 0.4 to 1.4 by 0.1. For
each spread, GRNN classifier was constructed. The TCS
measured by (3) are displayed in Fig. 2 as a function of the
threshold. As depicted in Fig. 2, the TCS decreases with
mcreasing the spread. The highest TCS is commonly
cbtained at 0.4 for all promoter data. The TCS of the
classifier determined at 0.4 is detailed in terms of ICS. This
v2as conducted as a function of the threshold and results are
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contained in Table 1. Compared to other promoters, the
GRNN is incapable of classifying the AT.
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Figure 3: Total classification sensitivity of RG-GRNN as a
function of range of random spread.

4.2 RG-GRNN

Using the RG, GRNN classifiers are constructed and
compared to conventional GRNN. The RG was used to
generate 200 sets of random spreads for the D defined in (2).
The experimental range of the random spread is the same as
the one employed earlier. Among 200 predictive models
generated at a given range and threshold, one model with the
highest TCS was selected. The TCSs determined are plotted
in Fig. 3 as a function of the range. As depicted in Fig. 3, the
TCS generally decreases with increasing the range, but
behaves inconsistently with the range. Over the entire ranges,
one optimal classifier with the highest TCS is obtained at 0.4
irrespective of the threshoid. In Table I, the TCS is detailed
in terms of the ICS with respect to the threshold. Compared
to Table I, it is noticeable that the RG-GRNN yields a
significantly improved TCS over the GRNN. This is
illustrated even in the ICS for the AT, which was not possible
by the GRNN as noticed earlier. The improvement is also
demonstrated for the EC and ZM but the OS. Consequently,
the RG-GRNN demonstrated much improved TCS along with
better ICS on average. These clearly indicate that the
proposed RG-GRNN is an effective way to construct a



classifier of large volume of DNA sequence data.

Table II: ICS of RG-GRNN with respect to the threshold

Threshold OS AT EC ZM TCS

0.9 1 8 4 8 21
0.8 1 9 6 8 24
0.7 1 9 6 8 24
0.6 1 9 6 8 24

5. Conclusions

Using the RG, a GRNN classifier was constructed and
applied to classify DNA promoter sequences. The RG was
used to generate a number of sets of random spreads for the
gaussian functions in the pattern layer. The RG-GRNN was
of the
classification sensitivity. Comparisons revealed that the RG-
GRNN was much better than GRNN in classifying all or
individual promoters. Particularly, the improvement was
significant in the total classification sensitivity. The proposed

compared to conventional GRNN in terms

classifier is very simple to implement and optimize. By the
demonstrated high classification capability, the RG-GRNN is
expected widely used for predicting or classifying large
volume of other bio-medical data.

Acknowledgements
This work was supported by Korea Health Industry
Development Institute from 2000 IMT Fund.

References

[1] M. V. Gils, H. Jansen, K. Nieminen, R. Summers, P. R.
Weller, "Using artificial neural networks for classifying
ICU patient states," I[EEE EMB Mag., pp. 41-47, 1997.

[2] S. Knudsen, "Promoter 2.0: for the recognition of Pol I
promoter sequences,” Bioinformatics, vol. 15, pp. 356-
361, 1999.

[3] S. Matis, Y. Xu, M. Shah, X. Guan, J. R. Einstein, R.
Mural, E. Uberhacher, "Detection of RNA polymerase 11
promoters and polyadenylation sites in human DNA
sequence." Comp. Chem. pp. 135-140, 1996.

(4] Specht D F, "A generalized regression neural networks."
IEEE Trans. Neural Networks vol. 2, pp. 568-576, 1991.

[5] http://signal.salk.edu/cgi-bin/tdnaexpress.

[6] http://arabidopsis.org.

{71 http://www.ncbi.nlm.nih.gov.

{8] F.R.Blattner, G. III Plunket, C. A. Bloc, N. T. Perna, V.
Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K.
Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A.
Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y.
Shao, “The complete genome sequence of Escherichia
coli K-12,” Science, vol. 277, pp. 1453-1474, 1997.

[9] A. L. Delcher, D. Harmon, S. Kasif, O. White, and S. L.
Salzberg, “Improved microbial gene identification with
GLIMMER,” Nucleic Acids Res., vol. 27, pp. 4636-4641,
1999.

[10] W. Gish and D. J. States, “Identification of protein

coding regions by database similarity search,” Nature
Genetic, vol. 3, pp. 266-272, 1993.

598



