• 제목/요약/키워드: Neural Classifier

검색결과 580건 처리시간 0.024초

퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화 (The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization)

  • 김길성;박병준;오성권
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.970-976
    • /
    • 2007
  • 본 연구에서는 퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기(Polynomial Network Pattern Classifier; PNC)를 설계하고 Particle Swarm Optimization 알고리즘을 이용하여 PNC 파라미터, 즉, 학습률, 모멘텀 계수, FCM 클러스터링의 퍼지화 계수(fuzzification Coefficient)를 최적화한다. 제안된 PNC 구조는 FCM 클러스터링에 기반한 분할 함수를 활성 함수로 사용하며, 다항식 함수로 구성된 연결가중치를 사용함으로서 기존 신경회로망 분류기의 선형적인 특성을 개선한다. PNC 구조는 언어적 해석관점에서 "If-then"의 퍼지 규칙으로 표현되며 퍼지 추론 메커니즘에 의해 구동된다. 즉 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 나뉘어 네트워크 구조가 형성된다. 조건부는 FCM 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 마지막으로, 네트워크의 최종출력은 추론부의 퍼지추론에 의한다. 제안된 PNC는 다항식 기반 구조의 퍼지 추론 특성으로 인해 출력 공간상에 비선형 판별 함수(nonlinear discernment function)가 생성되어 분류기로서의 성능을 높인다.

Fuzzy Neural Newtork Pattern Classifier

  • Kim, Dae-Su;Hun
    • 한국지능시스템학회논문지
    • /
    • 제1권3호
    • /
    • pp.4-19
    • /
    • 1991
  • In this paper, we propose a fuzzy neural network pattern classifier utilizing fuzzy information. This system works without any a priori information about the number of clusters or cluster centers. It classifies each input according to the distance between the weights and the normalized input using Bezdek's [1] fuzzy membership value equation. This model returns the correct membership value for each input vector and find several cluster centers. Some experimental studies of comparison with other algorithms will be presented for sample data sets.

  • PDF

사운드 분류기를 이용한 영상검색에 관한 연구 (A Study on Image Retrieval Using Sound Classifier)

  • 김승한;이명순;노승용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.419-421
    • /
    • 2006
  • The importance of automatic discrimination image data has evolved as a research topic over recent years. We have used forward neural network as a classifier using sound data features within image data, our initial tests have shown encouraging results that indicate the viability of our approach.

  • PDF

얼굴 마스크 탐지의 구현 (Implementation of Face Mask Detection)

  • 박성환;정유철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.17-19
    • /
    • 2021
  • 본 논문에서는 코로나19 사태에 대비하여 실시간으로 마스크를 제대로 쓴 사람과 제대로 쓰지 않은 사람을 구분하는 시스템을 제안한다. 이 시스템을 사용하기 위하여 모델 학습 시에 합성곱 신경망(CNN : Convolutional Neural Networks)를 사용한다. 학습된 모델을 토대로 영상에 적용 시 하르 특징 분류기(Haar Cascade Classifier)로 얼굴을 탐지하여 마스크 여부를 판단한다.

  • PDF

UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구 (Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld)

  • 이강용;김준섭
    • 비파괴검사학회지
    • /
    • 제15권4호
    • /
    • pp.531-539
    • /
    • 1996
  • 본 연구에서는 초음파 신호형상인식법을 이용하여 용접부의 인공 결함을 분류하기 위한 연구를 실시하였다. 이를 위해 신호처리 및 특징 변수를 추출할 때에 많은 사용자 정의 변수를 가지는 신호 형상 인식 패키지를 개발하였으며 디지탈 신호처리, 특징 변수 추출, 특징 변수의 선택, 분류기 선정 등의 과정을 일괄적으로 처리하였다. 특히, 선형 분류기, 경험적 Bayesian 분류기 등의 통계적 분류기와 신경회로망 분류기를 함께 사용하여 비교, 검토하였다. 이에 관한 적용 연구로 노치와 구멍으로 이루어진 인공 결함을 분류하였다. 그 결과 인공결함 분류에서 높은 인식률을 얻었으며, 특히 적절히 학습 시켰을 경우 신경회로망 분류기가 통계적 분류기에 비하여 인식률 면에서 유리하였다.

  • PDF

적응형 신호 형상 인식 프로그램 개발과 AE법에 의한 용접부 결함 분류에 관한 적용 연구 (Development of Adaptive Signal Pattern Recognition Program and Application to Classification of Defects in Weld Zone by AE Method)

  • 이강용;임장묵;김준섭
    • 비파괴검사학회지
    • /
    • 제16권1호
    • /
    • pp.34-45
    • /
    • 1996
  • 음향 방출 신호의 수집 및 처리, 특징값 추출 및 선택, 분류기 설계 및 검증 과정 등을 수행할 수 있는 신호 형상 인식 프로그램을 개발하고, 이를 오스테나이트계 STS304 용접부의 인공 결함 분류 연구에 적용하였다. 특히 분류기로는 선형 함수 분류기, 경험적 Bayesian 분류기, 신경 회로망 분류기를 사용하였고, 센서는 광대역 센서와 공진형 센서를 사용하여 분류기간의 비교와 센서간의 차이점을 검토하였다. 그 결과 신경 회로망 분류기가 다른 분류기에 비해 높은 인식률을 주었고, 공진형 센서보다는 광대역 센서를 통해 받은 신호가 더 높은 인식률을 주었다.

  • PDF

Power Disturbance Classifier Using Wavelet-Based Neural Network

  • Choi Jae-Ho;Kim Hong-Kyun;Lee Jin-Mok;Chung Gyo-Bum
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.307-314
    • /
    • 2006
  • This paper presents a wavelet and neural network based technology for the monitoring and classification of various types of power quality (PQ) disturbances. Simultaneous and automatic detection and classification of PQ transients, is recommended, however these processes have not been thoroughly investigated so far. In this paper, the hardware and software of a power quality data acquisition system (PQDAS) is described. In this system, an auto-classifying system combines the properties of the wavelet transform with the advantages of a neural network. Additionally, to improve recognition rate, extraction technology is considered.

머신러닝을 활용한 모돈의 생산성 예측모델 (Forecasting Sow's Productivity using the Machine Learning Models)

  • 이민수;최영찬
    • 농촌지도와개발
    • /
    • 제16권4호
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

Design of Polynomial Neural Network Classifier for Pattern Classification with Two Classes

  • Park, Byoung-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.108-114
    • /
    • 2008
  • Polynomial networks have been known to have excellent properties as classifiers and universal approximators to the optimal Bayes classifier. In this paper, the use of polynomial neural networks is proposed for efficient implementation of the polynomial-based classifiers. The polynomial neural network is a trainable device consisting of some rules and three processes. The three processes are assumption, effect, and fuzzy inference. The assumption process is driven by fuzzy c-means and the effect processes deals with a polynomial function. A learning algorithm for the polynomial neural network is developed and its performance is compared with that of previous studies.

비지도 학습 방법을 적용한 모듈화 신경망 기반의 패턴 분류기 설계 (A Design of Cassifier Using Mudular Neural Networks with Unsupervised Learning)

  • 최종원;오경환
    • 인지과학
    • /
    • 제10권1호
    • /
    • pp.13-24
    • /
    • 1999
  • 논문에서는 모듈화 신경 을 이용한 비지도 학습방법의 분류기를 제안한다. 각 모듈은 데이터의 통계학적인 분석의 결과로 설계되어져서, 데이터의 독립적인 군집들을 나타내게 된다. 이런 신경의 독립적인 분류 결과와 근접거리 척도를 이용한 유사도 측정을 통해 더욱 정확한 분류를 가능케 하며, 오 분류를 하는 모듈을 삭제함으로써 계산 을 줄인다. 이런 과정을 통해 신경 에 사용되는 각종 변수에 대한 별다른 조사 과정 없이 최상의 성능을 발휘하는 신경 에 준 는 성능을 가진 신경 망을 구축했다.

  • PDF