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Abstract

In this paper, we propose a fuzzy neural network pattern classifier utilizing
fuzzy information. This system works without any a prior: information about
the number of clusters or cluster centers. It classifies each input according to
the distance between the weights and the normalized input using Bezdek’s[1]
fuzzy membership value equation. This model returns the correct member-
ship value for each input vector and can find several cluster centers. Some
experimental studies of comparison with other algorithms will be presented
for sample data sets.

1 Introduction

Clustering or pattern classification divides a collection of data sets into several
classes based on some degree of similarity. Statistical pattern recognition view
methods can be found in [9]. Several cluster seeking methods are known so far
including the Isodata algorithm, which is an iterative self-organizing data analysis
technique(29, 14]. The Isodata method ‘s a heuristic approach by using statistical
analysis. General theory for pattern recognition can be found in [28, 29, 30, 31, 33].
Topics of image processing for pattern recognition can be found in [15, 26, 11].
Hartigan [16] discussed several clustering algorithms. The nearest neighbor (1-NN)
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classification rule assigns a pattern = of unknown classification to the class of its
nearest neighbor for any distance measure defined over the pattern space. The k-
nearest neighbor (k-NN) strategy works by assigning a pattern z to the class which
has the most neighbors of equal classification among k-nearest neighbors [1].

The K-means algorithm is based on the minimization of a performance index
which is defined as the sum of the squared distances from all points in a cluster
domain to the cluster center [29]. A more detailed explanation and algorithm will
appear in the later section.

The fuzzy c-means algorithm is broadly applied to optimal fuzzy partition [2],
pattern classification [4] and image segmentation [18, 5] etc. The fuzzy c-means
algorithm uses iterative optimization of an objective function based on a weighted
similarity measure between each data point and each of cluster centers [1]. The
convergence theorem for the fuzzy c-means clustering algorithm is in [1, 3] and
an improved proof was done in 1987 [17]. The fuzzy c-means algorithm is widely
studied and applied to several topics [4, 5, 10, 32, 27, 23]. The K-means algorithm
is a special case of fuzzy c-means algorithm.

Neural network models have now been applied to visual pattern recognition|13],
phonetic typewriter[25] and robotics. Recently, the combination of neural network
and fuzzy concept is proposed[19, 20, 21, 22]. A neural network is defined as a system
of many processing units operating in parallel whose specification is determined by
the network, processing units and weights between units. Hopefully artificial neural
network working in parallel can obtain real-time response.

This paper presents a fuzzy neural network(SONN) algorithm for pattern clas-
sification utilizing fuzzy concept. Experimental results show clear and correct clas-
sification for the sample data. We compared our results with those of the k-means
algorithm and fuzz-c means algorithm those are most frequently used for cluster

classification.

2 Cluster finding methods

2.1 Partitioning

Two ways of partitioning a data set S can be considered [1]. One method is hard
partitioning. This method has membership values of either 0 or 1. Only one winning



class has 1 and all others have 0. A hard partition of S is a set of subsets of 5,
{So, S1, 52, ..., Se—1} that satisfies those conditions:
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i=0
where c is the total number of clusters. In the neural network method, only the
winning neuron has value 1 and all other neurons have value 0. This is the "winner
take all” strategy. If some competing neurons have similar possibilities to win, only
one winner gets all even if the value difference is very small. Therefore this hard
partitioning method is considered to be too rigid and a more reasonable partitioning
method to assign its membership value proportional to the degree of similarity or
closeness is desired. For this purpose fuzzy membership partitioning is proposed.
Let u;; be a membership value in the closed interval [0, 1] such that input £; belongs
to cluster S;. The following are the fuzzy membership conditions:

c—1 n—1
Dui=1,0<d uy<n, (1)
=0

i=0

and
Uj; € [0, 1].

That means the sum of fuzzy memberships for any input §; should be 1 and no
subset is empty and no subset is all of the whole set S.

2.2 K-means Algorithm

The K-means algorithm is a sequential cluster center updating method to minimize
the sum of the squared distances from all vectors to the cluster centers. The conver-
- gence of this algorithm is not guaranteed, but sometimes this algorithm generates
reasonable results. The performance is largely dependent upon the number of class
centers specified, the order of input vectors, and the way we specify the initial cen-
ters. The disadvantage of this algorithm is that results are not stable. The K-means

algorithm is given below.



step 1.

step 2.

step 3.

step 4.

2.3

K - means Algorithm

Choose K arbitrary initial cluster centers vy (1), v2(1), ..., vg(1). We may choose
the first K vectors from the vector set. We can also choose them randomly.

At the kth step,
Distribute each sample vector z among K cluster domain by using the following
decision formula.

zeSi(k)if lz = vi(R)I* < llz - vi(k)]|® (2)

foralli =1, 2,3, .., K, i # j, where S;(k) denotes the set of vectors whose
cluster center is v;(k)

Compute the new cluster centers v;(k + 1), 7 = 1,2,..., K, such that the sum
of the squared distances from all points in S;(k) to the new cluster center is
minimized. The new cluster centers are calculated by averaging the vectors
that belong to that cluster.

If new cluster centers are the same as the previous ones for j = 1,2,..., K,
then the algorithm stops. Otherwise go back to step 2.

Fuzzy c-means Algorithm

Fuzzy theory was first introduced by Zadeh {34] in 1965. Fuzzy concepts can yield

more accurate representations of data structures. Whereas hard partitioning has

either 0 or 1 membership value, a fuzzy partitioning allows us any value in the

closed interval 0 and 1. It makes it possible to have relative values instead of ”all

or nothing” strategy.

In the case of the hard c-means algorithm, the position of a cluster center is

found to be the average of the ositions of all the patterns in that cluster. The

result is based on minimizing the sum of variances of all variables & for each cluster

t. The functional for hard c partition is as follows:

n [
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where u;; is the hard membership value of pixel k of cluster 7. uj is 1 if input vector
zi belongs to cluster ¢ and 0 otherwise. d;; is the distance between input vector xy
and cluster center of index .

Bezdek [1] developed the fuzzy ¢ — means algorithm(FCM) in 1980 based on
Dunn’s [10] fuzzy ¢ — means clustering algorithm for iterative optimization of the
least square error functional J,. This leads to infinite families of fuzzy clustering
algorithms which have been developed and used by a number of investigators. Ini-
tial generalization of functional J,, was developed by Dunn [10] and this algorithm
became a special case of the first infinite family of fuzzy clustering algorithms based
on a least-squared error criterion. The fuzzy c-means functional J,, is as follows:

Jm(U,v) = Zn: Zc:(uik)m(dik)2, (4)

k=1i=1
where U is a fuzzy ¢ — partition of X, and u;; is the fuzzy membership value of pixel
k of cluster i, v = {vo, v1, 9, ..., v._1} With v; € RP is the cluster center or prototype
of u;, 1 <7< ¢, (di)® = ||zx — vi]|* and || x| is any inner product induced norm on
RP and the weighting exponent me (1, 00).
Input to the fuzzy c-means algorithm consists of a data set of n units and the
algorithmic parameters ¢, m, n, and the convergence threshold (¢1). The algorithm

from Bezdek [1] is given below.
Fuzzy ¢ - means Algorithm

step 1. Fix ¢, 2 < ¢ < n, where cis the number of clusters and n is the number of data
items. Choose any inner product norm metric for R?. Fix m,1 < m < oo.

Initialize U(® in fuzzy c-partition space. Then at step s,s = 0,1,2, ... :

step 2. Calculate the c cluster centers {U,(S)} with the following formula and U(®).

Lk (ua)

vy = ——
Y Yr (w)™

where v; is the center for cluster 7.

(5)

step 3. Update U{®): calculate the memberships in U1 as follows:

(1) Define Ty and I;:
Tk = 1,2,...,6-— Ik
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I, = {i|ll <i<ecjdy = ||zk —vi|| =0}

(2) For data item k, compute new membership values

(a) Ik - @, = ]
Ui = 3 6
(S5 (32) D) ©

(b)]kaé(b:ﬁ’u;k:OVieTkand

Zu,-k == 1 (7)

iely

step 4. Compare U and U*+Y in a convenient matrix norm: if U{®) — UG+ < ¢,
stop; otherwise, increment s by 1 and return to step 2.

By using formulas (2.6) and (2.7), we can determine fuzzy membership values
after the distance is determined using SONN algorithm. For example, let’s assume

that we have four neurons and the square distance between each neuron and the
4 2 1
152 150 15
to the formula in (2.6). If there are some neurons that have distance value 0, then

input valueis 1, 2, 4, 8 respectively. The relative value u;; is %, according
the total fuzzy values of that particular neuron will be 1 by the formula in (2.7).

The limit value of ¢;, should be sufficiently small. If this value is large, the
algorithm will stop without having sufficient stabilization steps. No definite criteria
for this limit value is specified. This fuzzy c-means clustering algorithm is proved
to have good convergence properties [1, 3]. In spite of its early convergence proof,
several counter examples are found [23]. A new improved convergence theorem for
the fuzzy c-means clustering algorithm was proved [17]. Windham [32] also discussed
cluster validity for the fuzzy c-means clustering algorithm.

3 Fuzzy membership value assignment

We utilize feedback information in the SONN algorithm. Another layer is added to
the linear Kohonen network to map the distance dj; into membership values. dj; is
square root of the vector product of §; and W;. One adjustable layer neural network
model appears in Figure 1 and fuzzy model for membership value assignment appears
in Figure 2. In case of the hard ¢ membership, only the winning node that has the
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do dic-1)

OUTPUT LAYER :
dij = (zi = W,)T (zi = W)

Wo Wity

INPUT LAYER : m = 2

Figure 1: One adjustable layer neural network model.

minimum distance between the input value and the existing weights will have value
1 and all other neurons have membership value 0. This method is the so called

"winner take all” strategy.
In our SONN model, fuzzy feedback membership values in the range of [0, 1] will
be used. The fuzzy membership equation from Bezdek [1] is as follows.

Fuzzy membership value assignment equation

Fuzzy membership value in [0,1] will be decided by the following equations.

710 ifdu=0, (forsomek#j, 0<k,j<c—1)

otherwise
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Figure 2: Fuzzy model for membership value assignment.

1
Tiza ()

where c is the number of cluster. uj; is the fuzzy membership value of input ¢ to the

(9)

Uj,"

class j. The total sum of u;; is always 1.
For a hard ¢ membership, the output value in {0,1}

0 otherwise

u”_{ 1 if dj; = min(dy;,0 < 1 < ¢ — 1)
¢ i

The corresponding membership layer appears at the top level of Figure 3 of our
SONN model.

4 SONN Algorithm

We introduce our SONN algorithm.
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SONN Algorithm

step 1. Initialize weights W; for all j randomly between 0 and 1 and set the ring-
structure neighborhood radius (NB) to be [¢/2] where ¢ is the number of
output nodes. Also set the learning rate (LR) between 0 and 1 and set the
limit value to be sufficiently small, e.g, 0.0001.

step 2. For each input §;, ¢ =1, 2,..., n where n is the number of input.

1. Find the feedback distance u;; for each input vector.

1
uji = — (10)
[ (32) D]

2. Select the output node j*, (0 < j* < ¢ — 1), such that the sum of total

distances between £; and node j, d;+; is minimum.

3. Update the weight change factor dw; such that dw; = (& — W;). If node
7 is within the boundary of N B node j*, then let dw[j] be the difference
between input £; and existing weight w. dw[j] will be 0 otherwise.

4. Save the current weight W; to W _old; before updating weight.
5. Update weight W; using the rule:

W;=W;+ LR*xdw+*uj;*x N

6. Return the value diff, where diff = 3_(W; — W_old;)?. Add the value of
diff to the total_diff using total _diff = total_diff + diff.

step 3. If total_diff > limit then go to step 4 else go to step 5.
step 4. Reduce the learning rate (L R), reset total_diff to 0 and go to step 2.
step 5. If NB = 0 then go to step 6. Otherwise reduce NB by 1 and go to step 2.

step 6. Determine fuzzy membership value uj; by using the formulas (3.1) and (3.2).

When we update W, we multiply by some factor N, e.g 2 or 5, to the changing
factors if j is the minimum distance neuron. The value of N will be just 1 in other
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Figure 3: Self-Organizing Neural Network (SONN) model.
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cases. If the total changing factor LR * dw * uj; * N is greater than 1, the changing
factor is set to 1.

We emphasize the winning node that is the closest to the input. The background
for this lateral inhibitory technique can be found in [24]. We can also find a similar
technique in Grossberg’s ART'1 and ART?2 models [6, 7]. A Mexican hat function
serves as lateral inhibition based on a function of distance from the winning node. In
our work the winning node is emphasized more in that we multiply by some positive
integer factor greater than 1. Neurons in the winner’s neighborhood boundary
perform a similar adjustment. They are multiplied by a factor of 1. Neurons that
are out of the neighborhood will not adjust weights at all. This algorithm shows
a perfectly correct and clear classification for the testing data. The convergence
properties of this algorithm are more difficult to prove and may not be represented
by any known closed form, but it is guaranteed to stabilize after some amount of time
by using a reduced learning rate [24]. Comparisons with other clustering methods

are discussed in the next section.

5 Comparisons with other algorithms

We are going to compare our results with those of k-means algorithm and fuzzy-c

means algorithm those are most frequently used for clustering classification.

5.1 Cubic data

Cubic data consists of 1280 three dimensional vectors. Cluster 1 has values (95-
100, 0-5, 5-10) and Cluster 2 has values (0-5, 0-5, 95-100) and Cluster 3 has values
(96-100, 97-100,88-90). The values between ranges, e.g 95-100, are determined by
the random number generator. The order of clusters are also determined by random
number. We set limit as 0.005 and consider the learning rate for 10 cases, 0.1, 0.2,...,
1.0. If the percentage difference between the largest and the second largest values is
not sufficiently enough, that classification is considered ambiguous and it is included
in the error classification.

In SONN Algorithm, the percentage of misclassification error for our testing data
is all zero independent of the number of output and the learning rate. That means
this algorithm classifies every input data correctly. When the number of output is

_14_



3 and its learning rate is 0.1, its three cluster centers are (97.44, 2.60, 7.52), (2.43,
2.55, 97.50) and (98.02, 98.56, 89.00). Those cluster centers are quite reasonable
considering the data set. One of the advantage of SONN algorithm is that this
algorithm is independent of the number of the ouput nodes. It classifies perfectly
for the number of output is 10 or 15. Since the values between ranges, e.g 95-100,
are determined by a random number generator, the expected cluster center value is
in the middle of the range.

The results are similar for all three cases. SONN algorithm and FCM algorithm
are not so sensitive to the limit value, but K-means algorithm sometimes gives
unreasonable results. Experimental comparison of Cubic data with several other

algorithms appears in Table 1.

Cluster Cluster
Algorithm 1 ] 2 3
SONN (97.44, 2.60, 7.52) | (98.02, 98.56, 89.00) | (2.43, 2.55, 97.50)
FCM (95.53, 3.42, 7.55) | (95.92, 98.41, 88.25) | (2.41, 4.37, 95.74)
K-Means | (97.44, 2.60, 7.50) | (98.01, 98.57, 89.00) | (2.43, 2.54, 97.48)

Table 1: Comparison of cluster centers of Cubic data for different algorithms.

5.2 Iris data

The iris data[l] has three clusters. According to the result of our experiment, SONN
algorithm and FCM algorithm show similar result for the cluster center. K-means
algorithm returns somewhat different result. The 4th vector component in cluster
1 is around 1, SONN algorithm returns around 1, but K-means algorithm returns
around 5. The results of SONN and FCM are very similar. Experimental comparison
of results for Iris data with the three algorithms appears in Table 2.
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Cluster Cluster
Algorithm 1 [ 2 | 3
SONN (5.54, 2.90, 3.55, 1.08) | (5.03, 3.38, 1.59, 0.30) | (6.37, 2.93, 4.88, 1.64)
FCM (5.86, 2.75, 4.34, 1.38) | (5.00, 3.41, 1.48, 0.25) | (6.75, 3.05, 5.62, 2.04)
K-Means | (5.11, 3.39, 1.53, 5.07) | (5.30, 3.50, 1.40, 0.20) | (6.34, 2.88, 4.94, 6.24)

Table 2: Comparison of cluster centers of IRIS data for different algorithms.

5.3 Chiou’s data

Chiou’s data set [8] consists of 40 two dimensional vectors. It has two cluster centers.
The results of running the three algorithms and Chiou’s report are quite similar.
Experimental comparison of Cubic data with several other algorithms appears in

Table 3.

Cluster Cluster
Algorithm 1 ] 2
SONN (27.57, 18.63) | (7.46, 18.72)
FCM (27.02, 18.67) | (7.51, 18.55)
K-Means (26.25, 18.70) | (7.05, 18.54)
Chiou’s Report | (27.00, 18.70) | (7.40, 18.00)

Table 3: Comparison of cluster centers of Chiou’s data for different algorithms.

6 Conclusion

We presented a fuzzy neural network classifier that can find several cluster centers
and determine fuzzy clustering membership for any given data sets without a prior:
information utilizing fuzzy information. This model returns the correct membership
value for each input vector. The fuzzy membership value is determined by Bezdek’s

fuzzy membership value equation.
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Some experimental comparisons show that our fuzzy neural algorithm is suit-

able for pattern classification. Further research is on progress concentrating on the

correctness and speed up.
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