• Title/Summary/Keyword: Network-Robot

Search Result 1,053, Processing Time 0.027 seconds

User location tracking based on multiple heterogeneous robot collaboration (이종 다수 로봇 협업 기반 사용자 위치 추종)

  • Lee, Moohun;Cho, Joonmyun;Park, Junhong;Lee, Kangwoo;Suh, Youngho;Kim, Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.195-196
    • /
    • 2009
  • 서비스 로봇의 활용에 있어, 보다 고품질의 다양한 서비스를 제공하기 위해 로봇이 사용자의 위치를 추적하고 필요에 따라 사용자 주위로 이동할 수 있는 추종 기능이 요구된다. 현실적으로 사용자 위치 추종 기능을 독립적인 단일 로봇만으로 구현하기는 어려우며 다수 로봇과 환경 내에 설치된 장치들을 복합적으로 활용하여 구현하는 것이 효과적이다. 한국전자통신연구원에서는 네트워크 기반으로 다수의 이종 로봇과 환경 내 장치간의 협업에 대한 연구를 진행해 왔으며, 이러한 연구의 일환으로 이종 다수 로봇 협업 기반 사용자 추종 및 사용자 위치 기반 로봇 서비스 시스템을 개발하였다. 본 논문에서는 기 개발된 사용자 위치 추적 시스템을 실제 로봇에 적용하여 사용자를 추종하고, 이를 바탕으로 로봇이 사용자에게 다양한 서비스를 제공하는 로봇 응용 시스템에 대해 설명한다.

Control Network Design for Multi Body Robot Based on IEEE1394 (IEEE1394를 이용한 다관절 로봇의 분산 제어 네트워크 개발)

  • Cho, Jung San;Sung, Young-Whee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.4
    • /
    • pp.221-226
    • /
    • 2007
  • This paper propose a control network system based on IEEE1394 for a multi body robot control. The IEEE1394 has the characteristic of high speed(400Mbps), real-time, stability and plug&play. And IEEE1394 also supports freeform daisy chaining, branching and hot plugging, which reduce cabling complexity and make a system simple. Especially, multi host and broad casting support network data sharing method which is suitable for control network for multi body robot. Through experiment, we show that the proposed control network can interface 48 joints (BLDC motors, gears, and encoders) and four 6-axis force/torque sensors with 4Khz communication bandwidth, which is adequate for a multi body robot.

  • PDF

Experimental Studies of Balancing an Inverted Pendulum and Position Control of a Wheeled Drive Mobile Robot Using a Neural Network (신경회로망을 이용한 이동로봇 위의 역진자의 각도 및 로봇 위치제어에 대한 연구)

  • Kim, Sung-Su;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.888-894
    • /
    • 2005
  • In this paper, experimental studies of balancing a pendulum mounted on a wheeled drive mobile robot and its position control are presented. Main PID controllers are compensated by a neural network. Neural network learning algorithm is embedded on a DSP board and neural network controls the angle of the pendulum and the position of the mobile robot along with PID controllers. Uncertainties in system dynamics are compensated by a neural network in on-line fashion. Experimental results show that the performance of balancing of the pendulum and position tracking of the mobile robot is good.

Common Command-Scripting Language for network-based Robots (CCSLR) and Translator System Architecture (네트워크 기반 로봇을 조종하기 위한 공통 명령 프로그래밍 언어(CCSLR)와 번역 시스템 구조)

  • Lee, Il-Gu;Nguyen, Dong To;Kim, Do-Ik
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.48-54
    • /
    • 2007
  • A network-based robot [1] is a robot that explores service servers in the network environment for analyzing sensor data and making decision. Since network-based robot architecture was proposed, it's possible to reduce costs of robots. We hope robots would be all around at home environment. Therefore, normal users who are not experts need to be able to control those robots by using easy commands. We developed a scripting language, named CCSLR, to help users and developers who control various robots in ubiquitous environment. We focused on how to design the common language for various robots and how to translate a CCSLR script into a sequence of low-level commands of the target robot. In this paper, we propose scripting methods, with three layers. The CCSLR system reads the profile information from the knowledge representation database. Users don't have to know all about kinematical and mechanical details of a robot. Then again, the CCSLR system will use the profile information to translate the script into separated executable library commands. The CCSLR system manages robot's changing state every time a robot executes a command.

  • PDF

A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term (RBF 신경망과 강인 항을 적용한 I-PID 기반 2 자유도 뱀 로봇 머리 제어에 관한 연구)

  • Sung-Jae Kim;Jin-Ho Suh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.139-148
    • /
    • 2024
  • In this paper, we propose a two-degree-of-freedom snake robot head system and an I-PID (Intelligent Proportional-Integral-Derivative)-based controller utilizing RBF (Radial Basis Function) neural network and adaptive robust terms as a control strategy to reduce rotation occurring in the snake robot head. This study proposes a two-degree-of-freedom snake robot head system to avoid complex snake robot dynamics. This system has a control system independent of the snake robot. Subsequently, it utilizes an I-PID controller to implement a control system that can effectively manage rotation at the snake robot head, the robot's nonlinearity, and disturbances. To compensate for the time delay estimation errors occurring in the I-PID control system, an RBF neural network is integrated. Additionally, an adaptive robust term is designed and integrated into the control system to enhance robustness and generate control inputs responsive to signal changes. The proposed controller satisfies stability according to Lyapunov's theory. The proposed control strategy was tested using a 9-degreeof-freedom snake robot. It demonstrates the capability to reduce rotation in Lateral undulation, Rectilinear, and Sidewinding locomotion.

Implementation of Network-based Robot System to Guide a way (길안내를 위한 네트워크 기반 로봇 시스템 구현)

  • Kim, Hyung-Sun;Lee, Jun-Yeon;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.117-125
    • /
    • 2009
  • Early in 21st century, researches about intelligent service robot that provide various services for a human out of the industrial robot only has simple pattern repetition. It concentrates in the research regarding the URC(Ubiquitous Robotic Companion) robot which connects the network in the intelligent service. This paper proposes the robot system based on network to guide a way. The robot has made by lego brick and used ultrasonic sensor, rotation sensor and RFID tag to recognize external environment. Also, it includes a PDA to process the data between robot and server. The network server transmits information to robot controller by bluetooth and it controls the course movement and evasion of the robot. In this research, the robot system based on network to guide a way is easy to expand service and is able to process a data in real time due to data processing in the server as a part of intelligent robot. And it can reduce the cost to build a robot thank to use cheaper sensor equipment.

  • PDF

The Trace Algorithm of Mobile Robot Using Neural Network (신경 회로망을 이용한 Mobile Robot의 추종 알고리즘)

  • 남선진;김성현;김성주;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.267-270
    • /
    • 2001
  • In this paper, we propose the self-autonomous algorithm for mobile robot system. The proposed mobile robot system which is teamed by learning with the neural networks can trace the target at the same distances. The mobile robot can evaluate the distance between robot and target with ultrasonic sensors. By teaming the setup distance, current distance and command velocity, the robot can do intelligent self-autonomous drive. We use the neural network and back-propagation algorithm as a tool of learning. As a result, we confirm the ability of tracing the target with proposed mobile robot.

  • PDF

Control System of a Remote Robot using PDA (PDA를 이용한 원격 로봇 제어 시스템)

  • Han, Jong-Hye;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.206-208
    • /
    • 2004
  • A new method to control a remote robot with PDA and wireless network is presented. The needs of remote control systems using a home network environments are increased in these days. To solve the shortage of IP address in network, authorized TCP/IP and unauthorized TCP/IP address are used. The unauthorized TCP/IP is obtained by using MAC Address in the system and Network Layer. The model in the system is similar to Sever&Client in structure. Using this system, it is very easy to combine one network device with other network system. A robot system and PDA are used to show the effectiveness of the control system in home network environments.

  • PDF

Force tracking impedance control of robot by learning of robot-environment dynamics (로봇-작업환경 동역학의 학습에 의한 로봇의 힘 추종 임피이던스 제어)

  • 신상운;최규종;김영원;안두성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.548-551
    • /
    • 1997
  • Performance of force tracking impedance control of robot manipulators is degraded by the uncertainties in the robot and environment dynamic model. The purpose of this paper is to improve the controller robustness by applying neural network. Neural networks are designed to learn the uncertainties in robot and environment model for compensating the uncertainties. The proposed scheme is verified through the simulation of 20DOF robot manipulator.

  • PDF

Development of Monitoring Robot with Quadruped Link Mechanism (4족 링크 구조의 감시용 로봇 시스템 개발)

  • 정기범;박병훈;전병준;김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.46-46
    • /
    • 2000
  • A quadruped monitoring robot is introduced. The robot has several features that poses arbitrary position thanks to a 4-wheel hive mechanism, transmits an image and command data via RF wireless communication, and moreover, the imaged date are transferred through a network communication. The robot plays a role in monitoring what is happening around the robot and covers wide range due to a moving camera operated by the 4-wheel mechanism. The robot system can be applied k versatile models based the distinguished techniques introduced in this paper

  • PDF