• Title/Summary/Keyword: Network robustness

Search Result 498, Processing Time 0.027 seconds

Vehicle Recognition using NMF in Urban Scene (도심 영상에서의 비음수행렬분해를 이용한 차량 인식)

  • Ban, Jae-Min;Lee, Byeong-Rae;Kang, Hyun-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.554-564
    • /
    • 2012
  • The vehicle recognition consists of two steps; the vehicle region detection step and the vehicle identification step based on the feature extracted from the detected region. Features using linear transformations have the effect of dimension reduction as well as represent statistical characteristics, and show the robustness in translation and rotation of objects. Among the linear transformations, the NMF(Non-negative Matrix Factorization) is one of part-based representation. Therefore, we can extract NMF features with sparsity and improve the vehicle recognition rate by the representation of local features of a car as a basis vector. In this paper, we propose a feature extraction using NMF suitable for the vehicle recognition, and verify the recognition rate with it. Also, we compared the vehicle recognition rate for the occluded area using the SNMF(sparse NMF) which has basis vectors with constraint and LVQ2 neural network. We showed that the feature through the proposed NMF is robust in the urban scene where occlusions are frequently occur.

An Image Watermarking Method for Embedding Copyrighter's Audio Signal (저작권자의 음성 삽입을 위한 영상 워터마킹 방법)

  • Choi Jae-Seung;Kim Chung-Hwa;Koh Sung-Shik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.202-209
    • /
    • 2005
  • The rapid development of digital media and communication network urgently brings about the need of data certification technology to protect IPR (Intellectual property right). This paper proposed a new watermarking method for embedding owner's audio signal. Because this method uses an audio signal as a watermark to be embedded, it is very useful to claim the ownership aurally. And it has the advantage of restoring audio signal modified and especially removed by image removing attacks by applying our LBX(Linear Bit-expansion) interleaving. Three basic stages of our watermarking include: 1) Encode . analogue owner's audio signal by PCM and create new digital audio watermark, 2) Interleave an audio watermark by our LBX; and 3) Embed the interleaved audio watermark in the low frequency band on DTn (Discrete Haar Wavelet Transform) of image. The experimental results prove that this method is resistant to lossy JPEG compression as standard image compression and especially to cropping and rotation which remove a part of Image.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

Design of a Timing Estimator Algorithm for 2.45GHz LR-WPAM Receiver (2.45GHz LR-WPAN 수신기를 위한 Timing Estimator 알고리즘의 설계)

  • Kang Shin-Woo;Do Joo-Hyun;Park Tha-Joon;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.282-290
    • /
    • 2006
  • In this paper, we propose an enhanced Timing Estimator algorithm for 2.45GHz LR-WPAN receiver. Because an expensive and highly efficient oscillator can't be used for low-cost implementation, a Timing Estimator algorithm having stable operation in the channel environment with center frequency tolerance of 80 ppm is required. To enhance the robustness to frequency offset and the stability of receiver performance, multiple delay differential filter is adopted. By utilizing the characteristic that the correlation result between the output signal of Multiple delay differential filter and reference signal is restricted on the In-phase part of the correlator output, a coherent detection scheme instead of the typical noncoherent one is adopted for Timing Estimator. The application of the coherent detection scheme is suitable for LR-WPAN receiver aimed at low-cost, low-power, and low-complexity, since it can remove performance degradation due to squaring loss of I/Q squaring operation and decrease implementation complexity. Computer simulation results show that the proposed algorithm achieved performance improvement compared with the differential detection-based noncoherent scheme by 2dB in average.

A Study of Core-Stateless Mechanism for Fair Bandwidth Allocation (대역 공평성 보장을 위한 Core-Stateless 기법 연구)

  • Kim, Hwa-Suk;Kim, Sang-Ha;Kim, Young-Bu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.343-355
    • /
    • 2003
  • Fair bandwidth allocations at routers protect adaptive flows from non-adaptive ones and may simplify end-to end congestion control. However, traditional fair bandwidth allocation mechanisms, like Weighted Fair Queueing and Flow Random Early Drop, maintain state, manage buffera and perform packet scheduling on a per-flow basis. These mechanisms are more complex and less scalable than simple FIFO queueing when they are used in the interi or of a high-speed network. Recently, to overcome the implementation complexity problem and address the scalability and robustness, several fair bandwidth allocation mechanisms without per-flow state in the interior routers are proposed. Core-Stateless Fair Queueing and Rainbow Fair Queuing are approximates fair queueing in the core-stateless networks. In this paper, we proposed simple Layered Fair Queueing (SLFQ), another core-stateless mechanism to approximate fair bandwidth allocation without per-flow state. SLFQ use simple layered scheme for packet labeling and has simpler packet dropping algorithm than other core-stateless fair bandwidth allocation mechanisms. We presente simulations and evaluated the performance of SLFQ in comparison to other schemes. We also discussed other are as to which SLFQ is applicable.

A Study on Algorithm Robust to Error for Estimating partial Discharge Location using Acoustic Emission Sensors (AE(Acoustic Emission) 센서를 이용한 오차에 강인한 부분방전 위치추정 알고리즘에 관한 연구)

  • Cho, Sung-Min;Shin, Hee-Sang;Kim, Jae-Chul;Lee, Yang-Jin;Kim, Kwang-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.69-75
    • /
    • 2008
  • This paper presents an algorithm robust to error for estimating partial discharge (PD) location using acoustic emission sensors. In operating transformers, the velocity computing of the acoustic signal is difficult because the temperature of the Insulation oil is not homogeneous. So, some error occurs in the process. Therefore, the algorithm estimating PD location must consider this error to provide maintenance person with useful information. The conventional algorithm shows the PD position as a point, while the new algorithm using LookUp-Table(LUT) shows PD position as error-map visually. The error-map is more useful than the conventional result because of robustness to error. Also, we compared performance of them, by adding error to data on purpose.

Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF

Fault-Tolerant Event Detection in Wireless Sensor Networks using Evidence Theory

  • Liu, Kezhong;Yang, Tian;Ma, Jie;Cheng, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3965-3982
    • /
    • 2015
  • Event detection is one of the key issues in many wireless sensor network (WSN) applications. The uncertainties that are derived from the instability of sensor node, measurement noise and incomplete sampling would influence the performance of event detection to a large degree. Many of the present researches described the sensor readings with crisp values, which cannot adequately handle the uncertainties inhered in the imprecise sensor readings. In this paper, a fault-tolerant event detection algorithm is proposed based on Dempster-Shafer (D-S) theory (also called evidence theory). Instead of crisp values, all possible states of the event are represented by the Basic Probability Assignment (BPA) functions, with which the output of each sensor node are characterized as weighted evidences. The combination rule was subsequently applied on each sensor node to fuse the evidences gathered from the neighboring nodes to make the final decision on whether the event occurs. Simulation results show that even 20% nodes are faulty, the accuracy of the proposed algorithm is around 80% for event region detection. Moreover, 97% of the error readings have been corrected, and an improved detection capability at the boundary of the event region is gained by 75%. The proposed algorithm can enhance the detection accuracy of the event region even in high error-rate environment, which reflects good reliability and robustness. The proposed algorithm is also applicable to boundary detection as it performs well at the boundary of the event.

A merging framework for improving field scale root-zone soil moisture measurement with Cosmic-ray neutron probe over Korean Peninsula

  • Nguyen, Hoang Hai;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.154-154
    • /
    • 2019
  • Characterization of reliable field-scale root-zone soil moisture (RZSM) variability contribute to effective hydro-meterological monitoring. Although a promising cosmic-ray neutron probe (CRNP) holds the pontential for field-scale RZSM measurement, it is often restricted at deeper depths due to the non-unique sensitivity of CRNP-measured fast neutron signal to other hydrogen pools. In this study, a merging framework relied on coupling cosmic-ray soil moisture with a representative additional RZSM, was introduced to scale shallower CRNP effective depth to represent root-zone layer. We tested our proposed framework over a densely vegetated region in South Korea covering a network of one CRNP and nine in-situ point measurements. In particular, cosmic-ray soil moisture and ancillary RZSM retrieved from the most time stable location were considered as input datasets; whereas the remaining point locations were used to generate a reference RZSM product. The errors between these two input datasets and the reference were forecasted by a linear autoregressive model. A linear combination of forecasts was then employed to compute a suitable weight for merging two input products from the predicted errors. The performance of merging framework was evaluated against reference RZSM in comparison to the two original products and a commonly used exponential filter technique. The results of this study showed that merging framework outperformed other products, demonstrating its robustness in improving field-scale RZSM. Moreover, a strong relationship between the quality of input data and the performance merging framework in light of CRNP effective depth variation has been also underlined via the merging framework.

  • PDF

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.