• Title/Summary/Keyword: Network reduction

검색결과 1,414건 처리시간 0.031초

Performance Evaluation of Lower Complexity Hybrid-Fix-and-Round-LLL Algorithm for MIMO System

  • Lv, Huazhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2554-2580
    • /
    • 2018
  • Lenstra-Lenstra-$Lov{\acute{a}}sz$ (LLL) is an effective receiving algorithm for Multiple-Input-Multiple-Output (MIMO) systems, which is believed can achieve full diversity in MIMO detection of fading channels. However, the LLL algorithm features polynomial complexity and shows poor performance in terms of convergence. The reduction of algorithmic complexity and the acceleration of convergence are key problems in optimizing the LLL algorithm. In this paper, a variant of the LLL algorithm, the Hybrid-Fix-and-Round LLL algorithm, which combines both fix and round measurements in the size reduction procedure, is proposed. By utilizing fix operation, the algorithmic procedure is altered and the size reduction procedure is skipped by the hybrid algorithm with significantly higher probability. As a consequence, the simulation results reveal that the Hybrid-Fix-and-Round-LLL algorithm carries a faster rate of convergence compared to the original LLL algorithm, and its algorithmic complexity is at most one order lower than original LLL algorithm in real field. Comparing to other families of LLL algorithm, Hybrid-Fix-and-Round-LLL algorithm can make a better compromise in performance and algorithmic complexity.

우수유출저감 시설의 최적위치 결정 (Optimal Location of Best Management Practices for Storm Water Runoff Reduction)

  • 장수형;이지호;유철상;한수희;김상단
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.180-184
    • /
    • 2008
  • A distributed hydrologic model of an urban drainage area on Bugok drainage area in Oncheon stream was developed and combined with a optimization method to determine the optimal location and number of best management practices (BMPs) for storm water runoff reduction. This model is based on the SCS-CN method and integrated with a distributed hydrologic network model of the drainage area using system of 4,211 hydrologic response units (HRUs). Optimal location is found by locating HRU combination that leads to a maximum reduction in peak flow at the drainage outlet in this model. The results of this study indicate the optimal locations and numbers of BMPs, however, for more exact application of this model, project cost and SCS-CN reduction rate of structural facilities such infiltration trench and pervious pavement will have to be considered.

산소환원반응 촉매용 질소 도핑된 탄소나노섬유의 제조 (Synthesis of Nitrogen-doped Carbon Nanofibers for Oxygen Reduction Reaction)

  • 안건형;이은환;안효진
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.420-425
    • /
    • 2016
  • N-doped carbon nanofibers as catalysts for oxygen-reduction reactions are synthesized using electrospinning and carbonization. Their morphologies, structures, chemical bonding states, and electrochemical performance are characterized. The optimized N-doped carbon nanofibers exhibit graphitization of carbon nanofibers and an increased nitrogen doping as well as a uniform network structure. In particular, the optimized N-doped carbon nanofibers show outstanding catalytic activity for oxygen-reduction reactions, such as a half-wave potential ($E_{1/2}$) of 0.43 V, kinetic limiting current density of $6.2mAcm^{-2}$, electron reduction pathways (n = 3.1), and excellent long-term stability after 2000 cycles, resulting in a lower $E_{1/2}$ potential degradation of 13 mV. The improvement in the electrochemical performance results from the synergistic effect of the graphitization of carbon nanofibers and the increased amount of nitrogen doping.

Experimental Study on Drag Reduction Effects of New Non-Ionic Surfactants

  • Tae, Choon-Sub;Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권4호
    • /
    • pp.147-155
    • /
    • 2006
  • The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant were investigated as a function of fluid velocity, temperature, and surfactant concentration. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC Cethyl Trimethyl Ammonium Chloride) had DR of $0.6{\sim}0.8$ at $1,000{\sim}2,000ppm$ concentration with fluid temperature ranging between $50{\sim}60^{\circ}C$. However, the DR was very low when the fluid temperature was $70{\sim}80^{\circ}C$. The new amine oxide and betaine surfactant(SAOB Stearyl Amine Oxide + Betaine) had lower DR at fluid temperatures ranging between $50{\sim}60^{\circ}C$ compared with CTAC. However, with fluid temperature ranging between $70{\sim}80^{\circ}C$ the DR was $0.6{\sim}0.8$ when the concentration level was $1,000{\sim}2,000ppm$.

A congestion control scheme estimating global channel busy ratio in VANETs

  • Kim, Tae-won;Jung, Jae-il;Lee, Joo-young
    • 전기전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.115-122
    • /
    • 2017
  • In vehicular safety service, every vehicle broadcasts Basic Safety Message (BSM) periodically to inform neighbor vehicles of host vehicle information. However, this can cause network congestion in a region that is crowded with vehicles resulting in a reduction in the message delivery ratio and an increase in the end-to-end delay. Therefore, it could destabilize the vehicular safety service system. In this paper, in order to improve the congestion control and to consider the hidden node problem, we propose a congestion control scheme using entire network congestion level estimation combined with transmission power control, data rate control and time slot based transmission control algorithm. The performance of this scheme is evaluated using a Qualnet network simulator. The simulation result shows that our scheme mitigates network congestion in heavy traffic cases and enhances network capacity in light traffic cases, so that packet error rate is perfectly within 10% and entire network load level is maintained within 60~70%. Thus, it can be concluded that the proposed congestion control scheme has quite good performance.

An Enhanced Transmission Mechanism for Supporting Quality of Service in Wireless Multimedia Sensor Networks

  • Cho, DongOk;Koh, JinGwang;Lee, SungKeun
    • 인터넷정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.65-73
    • /
    • 2017
  • Congestion occurring at wireless sensor networks(WSNs) causes packet delay and packet drop, which directly affects overall QoS(Quality of Service) parameters of network. Network congestion is critical when important data is to be transmitted through network. Thus, it is significantly important to effectively control the congestion. In this paper, new mechanism to guarantee reliable transmission for the important data is proposed by considering the importance of packet, configuring packet priority and utilizing the settings in routing process. Using this mechanism, network condition can be maintained without congestion in a way of making packet routed through various routes. Additionally, congestion control using packet service time, packet inter-arrival time and buffer utilization enables to reduce packet delay and prevent packet drop. Performance for the proposed mechanism was evaluated by simulation. The simulation results indicate that the proposed mechanism results to reduction of packet delay and produces positive influence in terms of packet loss rate and network lifetime. It implies that the proposed mechanism contributes to maintaining the network condition to be efficient.

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • 제13권4호
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

보안측면에서의 가상사설망과 전용회선망의 비교 연구 (A study on the comparison of VPN with Dedicated Line Network on security)

  • 정은희;이병관
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권2호
    • /
    • pp.107-122
    • /
    • 2008
  • 통신망은 크게 누구든지 접속할 수 있는 공중망과 해당 조직 내의 사람들만이 접속할 수 있는 사설망으로 구분할 수 있는데, 공중망의 회선비용 절감과 사설망의 신뢰성 있는 보안 통신 지원이라는 장점만을 부각시킨 것이 VPN이라 할 수 있다. 본 연구에서는 3계층 터널링 기법을 사용하는 IPSec VPN과 2계층 스위칭 기법과 3계층 라우팅 기술을 접목한 새로운 스위칭 기법을 이용하는 MPLS(Multi Protocol Label Switching), 그리고 전용회선을 보안측면에서 비교 분석하였다. VPN이 비용면이나 보안측면에서 전용회선보다 우수하며, IPSec VPN과 MPLS VPN을 비교해보면 안전한 데이터 전송을 위한 보안 유지, 비용 절감, QoS 제공, 운영 및 관리의 유연성을 보장하고, 오히려 IPSec VPN의 문제점을 보완하는 MPLS VPN이 차세대 VPN이라 할 수 있다.

  • PDF

합성곱 신경망 기반 선체 표면 압력 분포의 픽셀 수준 예측 (Pixel level prediction of dynamic pressure distribution on hull surface based on convolutional neural network)

  • 김다연;서정범;이인원
    • 한국가시화정보학회지
    • /
    • 제20권2호
    • /
    • pp.78-85
    • /
    • 2022
  • In these days, the rapid development in prediction technology using artificial intelligent is being applied in a variety of engineering fields. Especially, dimensionality reduction technologies such as autoencoder and convolutional neural network have enabled the classification and regression of high-dimensional data. In particular, pixel level prediction technology enables semantic segmentation (fine-grained classification), or physical value prediction for each pixel such as depth or surface normal estimation. In this study, the pressure distribution of the ship's surface was estimated at the pixel level based on the artificial neural network. First, a potential flow analysis was performed on the hull form data generated by transforming the baseline hull form data to construct 429 datasets for learning. Thereafter, a neural network with a U-shape structure was configured to learn the pressure value at the node position of the pretreated hull form. As a result, for the hull form included in training set, it was confirmed that the neural network can make a good prediction for pressure distribution. But in case of container ship, which is not included and have different characteristics, the network couldn't give a reasonable result.

SDN-COR: An Efficient Network Coding Opportunistic Routing Method for Software-Defined Wireless Sensor Networks

  • Yifan Hu;Xiqiang Hou;Fuqiang Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1795-1816
    • /
    • 2024
  • A Software-Defined Wireless Sensor Networks (SDWSNs) architecture is firstly proposed to address the issues of inflexible architecture strategies and low scalability of traditional WSNs in this article. The SDWSNs architecture involves the design of a software-defined sensor network model and a customized controller architecture, along with an analysis of the functionalities of each management module within the controller architecture. Secondly, to tackle limited energy problem of sensor nodes, a network coding opportunistic routing method (SDN-COR) is presented based on SDWSNs. This method incorporates considerations of coding opportunities, vertical distance, and remaining energy of nodes to design a metric for encoding opportunistic routing. By combining opportunistic forwarding mechanisms, candidate forwarding sets are selected and sorted based on priority to prioritize data transmission by higher-priority nodes. Simulation results indicate that, comparing with conventional methods, this approach achieves reduction in energy consumption by an average of 21.5%, improves network throughput by 24%, and extends network lifetime by 20%.