Park, Sung-Wook;Kim, Seunghyun;Lim, Su-Chang;Kim, Do-Yeon
Journal of Korea Multimedia Society
/
v.23
no.6
/
pp.729-737
/
2020
Screening with low-dose spiral computed tomography (LDCT) has been shown to reduce lung cancer mortality by about 20% when compared to standard chest radiography. One of the problems arising from screening programs is that large amounts of CT image data must be interpreted by radiologists. To solve this problem, automated detection of pulmonary nodules is necessary; however, this is a challenging task because of the high number of false positive results. Here we demonstrate detection of pulmonary nodules using six off-the-shelf convolutional neural network (CNN) models after modification of the input/output layers and end-to-end training based on publicly databases for comparative evaluation. We used the well-known CNN models, LeNet-5, VGG-16, GoogLeNet Inception V3, ResNet-152, DensNet-201, and NASNet. Most of the CNN models provided superior results to those of obtained using customized CNN models. It is more desirable to modify the proven off-the-shelf network model than to customize the network model to detect the pulmonary nodules.
Journal of the Korean Operations Research and Management Science Society
/
v.23
no.4
/
pp.213-224
/
1998
Since the late 1980s, an Increasing number of neural network models have been studied in the areas of financial prediction and analysis. The purpose of this study is to Investigate the possibility of building a neural network model that is able to construct a profitable trading strategy in the Korean Stock Market. This study classifies stocks into the future market winners and losers from the publicly available accounting information and builds portfolios based on this information. The performances of the winner portfolios and the loser portfolios are compared with each other and against the market index. The empirical result of this research is consistent with the traditional fundamental analysis where it is claimed that the financial statements contain firm values that may not be fully reflected In stock prices without delay. Despite the supporting empirical evidence. It is somewhat Inconclusive as to whether or not the abnormal return in excess of market return is the result of the extra knowledge obtained in the neural network models derived from the historical accounting data. This research attempts to open another avenue using neural network models for searching for evidence against market efficiency where statistics and intuition have played a major role.
The Journal of Korean Institute of Communications and Information Sciences
/
v.17
no.11
/
pp.1199-1205
/
1992
In this paper, a Korean word recognition method which usese Neural Network and Hidden Markov Models(HMM) is proposed to improve a recognition rate with a small amount of learning data. The method reduces the fluctuation due to personal differences which is a problem to a HMM recognition system. In this method, effective recognizer is designed by the complement of each recognition result of the Hidden Markov Models(HMM) and Neural Network. In order to evaluate this model, word recognition experiment is carried out for 28 cities which is DDD area names uttered by two male and a female in twenties. As a result of testing HMM with 8 state, codeword is 64, the recognition rate 91[%], as a result of testing Neural network(NN) with 64 codeword the recognition rate is 89[%]. Finally, as a result of testing NN-HMM with 64 codeword which the best condition in former tests, the recognition rate is 95[%].
Journal of the Korean Society of Manufacturing Process Engineers
/
v.21
no.6
/
pp.89-97
/
2022
Ultrasonic metal welding has been widely used for joining lithium-ion battery tabs. Weld quality monitoring has been an important issue in lithium-ion battery manufacturing. This study focuses on the weld quality monitoring in ultrasonic metal welding with the longitudinal-torsional vibration mode horn developed newly. As the quality of ultrasonic welding depends on welding parameters like pressure, time, and amplitude, the suitable values of these parameters were selected for experimentation. The welds were tested via tensile testing machine and weld strengths were investigated. The dataset collected for performance test was used to train the multi-layer perceptron neural network. The three layer neural network was used for the study and the optimum number of neurons in the first and second hidden layers were selected based on performances of each models. The best models were selected for the horn and then tested to see their performances on an unseen dataset. The neural network models for the longitudinal-torsional mode horn attained test accuracy of 90%. This result implies that proposed models has potential for the weld quality monitoring.
Journal of information and communication convergence engineering
/
v.19
no.4
/
pp.241-247
/
2021
Particulate matter has emerged as a serious global problem, necessitating highly reliable information on the matter. Therefore, various algorithms have been used in studies to predict particulate matter. In this study, we compared the prediction performance of neural network models that have been actively studied for particulate matter prediction. Among the neural network algorithms, a deep neural network (DNN), a recurrent neural network, and long short-term memory were used to design the optimal prediction model using a hyper-parameter search. In the comparative analysis of the prediction performance of each model, the DNN model showed a lower root mean square error (RMSE) than the other algorithms in the performance comparison using the RMSE and the level of accuracy as metrics for evaluation. The stability of the recurrent neural network was slightly lower than that of the other algorithms, although the accuracy was higher.
International Journal of Concrete Structures and Materials
/
v.1
no.1
/
pp.63-73
/
2007
Optimum multi-layered feed-forward neural network (NN) models using a resilient back-propagation algorithm and early stopping technique are built to predict the shear capacity of reinforced concrete deep and slender beams. The input layer neurons represent geometrical and material properties of reinforced concrete beams and the output layer produces the beam shear capacity. Training, validation and testing of the developed neural network have been achieved using 50%, 25%, and 25%, respectively, of a comprehensive database compiled from 631 deep and 549 slender beam specimens. The predictions obtained from the developed neural network models are in much better agreement with test results than those determined from shear provisions of different codes, such as KBCS, ACI 318-05, and EC2. The mean and standard deviation of the ratio between predicted using the neural network models and measured shear capacities are 1.02 and 0.18, respectively, for deep beams, and 1.04 and 0.17, respectively, for slender beams. In addition, the influence of different parameters on the shear capacity of reinforced concrete beams predicted by the developed neural network shows consistent agreement with those experimentally observed.
Proceedings of the Korean Society of Precision Engineering Conference
/
1997.10a
/
pp.454-457
/
1997
The purpose of this study is to develop an optimal model, using existing models, that is able to estimate the amount of spatter utilizing artificial neural network in the short circuit transfer mode of gas metal arc (GMA) welding. The amount of spatter generated during welding can become a barometer which represents the process stability of metal transfer in GMA welding, and it depends on some factors which constitute a periodic waveforms of welding current and arc voltage in short circuit GMA welding. So, the 12 factors, which could express the characteristics for the waveforms, and the amount of spatter are used as input and output variables of the neural network, respectively. Two neural network models to estimate the amount of spatter are proposed: A neural network model, where arc extinction is not considered, and a combined neural network model where it is considered. In order to reduce the calculation time it take to produce an output, the input vector and hidden layers for each model are optimized using the correlation coefficients between each factor and the amount of spattcr. The est~mation performance of each optimized model to the amount of spatter IS assessed and compared to the est~mation performance of the model proposed by Kang. Also, through the evaluation for the estimation performance of each optimized model, it is shown that the combined neural network model can almost perfectly predict the amount of spatter.
Manufacturers and retailers are interested in how prices, promotions, discounts and other marketing variables can influence the sales and shares of the products that they produce or sell. Therefore, many models have been developed to predict the brand share. Since the customer choice models are usually used to predict the market share, here we use hybrid model of Probabilistic Neural Network and Artificial Bee colony Algorithm (PNN-ABC) that we have introduced to model consumer choice to predict brand share. The evaluation process is carried out using the same data set that we have used for modeling individual consumer choices in a retail coffee market. Then, to show good performance of this model we compare it with Artificial Neural Network with one hidden layer, Artificial Neural Network with two hidden layer, Artificial Neural Network trained with genetic algorithms (ANN-GA), and Probabilistic Neural Network. The evaluated results show that the offered model is outperforms better than other previous models, so it can be use as an effective tool for modeling consumer choice and predicting market share.
Minhyuk JUNG;Jaemook CHOI;Seonu JOO;Wonseok CHOI;Hwikyung Chun
International conference on construction engineering and project management
/
2024.07a
/
pp.1285-1285
/
2024
In process plant construction, the implementation of design automation technologies is pivotal in reducing the timeframes associated with the design phase and in enabling the generation and evaluation of a variety of design alternatives, thereby facilitating the identification of optimal solutions. These technologies can play a crucial role in ensuring the successful delivery of projects. Previous research in the domain of design automation has primarily focused on parametric design in architectural contexts and on the automation of equipment layout and pipe routing within plant engineering, predominantly employing rule-based algorithms. Nevertheless, these studies are constrained by the limited flexibility of their models, which narrows the scope for generating alternative solutions and complicates the process of exploring comprehensive solutions using nonlinear optimization techniques as the number of design and engineering parameters increases. This research introduces a framework for automating plant design through the use of generative neural network models to overcome these challenges. The framework is applicable to the layout problems of process plants, covering the equipment necessary for production processes and the facilities for essential resources and their interconnections. The development of the proposed Neural-network (NN) based Generative Design Model unfolds in four stages: (a) Rule-based Model Development: This initial phase involves the development of rule-based models for layout generation and evaluation, where the generation model produces layouts based on predefined parameters, and the evaluation model assesses these layouts using various performance metrics. (b) Neural Network Model Development: This phase transitions towards neural network models, establishing a NN-based layout generation model utilizing Generative Adversarial Network (GAN)-based methods and a NN-based layout evaluation model. (c) Model Optimization: The third phase is dedicated to optimizing the models through Bayesian Optimization, aiming to extend the exploration space beyond the limitations of rule-based models. (d) Inverse Design Model Development: The concluding phase employs an inverse design method to merge the generative and evaluative networks, resulting in a model that outputs layout designs to meet specific performance objectives. This study aims to augment the efficiency and effectiveness of the design process in process plant construction, transcending the limitations of conventional rule-based approaches and contributing to the achievement of successful project outcomes.
This paper introduces the outlines of the state-of-the-art in studying FMSs using analytical queueing network models. These include Jackson networks, reversible networks and approximate models of non-product-form networks. the focus is on identifying the major features of models as they relate to the operational characteristics of FMSs. Prescriptive models concerning the optimal design and/or operational control of FMS networks are also discussed. We notice that the presentation of materials in this paper basically follows Yao and Buzacott, On Queueing Network Models of Flexible Manufacturing Systems(FMSs), invited and published on Queueing Systems, Theory and Application 1(1986). For other analytical models of FMSs, refer to Buzacott and Yao, Flexible Manufacturing Systems : A Review of Analytical Models, Management Science 32, No.7(1986).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.