• Title/Summary/Keyword: Network models

Search Result 3,898, Processing Time 0.031 seconds

The Phenomenological Comparison between Results from Single-hole and Cross-hole Hydraulic Test (균열암반 매질 내 단공 및 공간 간섭 시험에 대한 현상적 비교)

  • Kim, Tae-Hee;Kim, Kue-Young;Oh, Jun-Ho;Hwang, Se-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.39-53
    • /
    • 2007
  • Generally, fractured medium can be described with some key parameters, such as hydraulic conductivities or random field of hydraulic conductivities (continuum model), spatial and statistical distribution of permeable fractures (discrete fracture network model). Investigating the practical applicability of the well-known conceptual models for the description of groundwater flow in fractured media, various types of hydraulic tests were applied to studies on the highly fractured media in Geumsan, Korea. Results from single-hole packer test show that the horizontal hydraulic conductivities in the permeable media are between $7.67{\times}10^{-10}{\sim}3.16{\times}10^{-6}$ m/sec, with $7.70{\times}10^{-7}$ m/sec arithmetic mean and $2.16{\times}10^{-7}$ m/sec geometric mean. Total number of test interval is 110 at 8 holes. The number of completely impermeable interval is 9, and the low permeable interval - below $1.0{\times}10^{-8}$ m/sec is 14. In other words, most of test intervals are permeable. The vertical distribution of hydraulic conductivities shows apparently the good correlation with the results of flowmeter test. But the results from the cross-hole test show some different features. The results from the cross-hole test are highly related to the connectivity and/or the binary properties of fractured media; permeable and impermeable. From the viewpoint of the connection, the application of the general stochastic approach with a single continuum model may not be appropriate even in the moderately or highly permeable fractured medium. Then, further studies on the investigation method and the analysis procedures should be required for the reasonable and practical design of the conceptual model, with which the binary properties, including permeable/impermeable features, can be described.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Moho Discontinuity Studies Beneath the Broadband Stations Using Receiver Functions in South Korea (수신함수를 이용한 남한의 광대역 관측망 하부의 Moho 불연속면 연구)

  • Kim, So-Gu;Lee, Seong-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.139-155
    • /
    • 2001
  • We investigate the vertical velocity models beneath the newly installed broadband seismic network of KMA (Korea Meteorological Administration) by using receiver function inversion technique. The seismic phases are primarily P-to-S conversions and reverberations generated at the two highest impedance interfaces like the Moho (crust-mantle boundary) and the sediment-basement contact. We obtained the teleseismic P-wave receiver functions, which were derived from teleseismic records of Seoul (SEO), Inchon (INCN), Tejeon (TEJ) , Sosan (SOS/SES), Kangnung (KAN), Ulchin (ULC/ULJ), Taegu (TAG), Pusan (PUS), and Ullung-do (ULL) stations. For Kwangju (KWA/KWJ) and Chunchon (CHU) stations, the Moho conversion Ps arrivals and waveforms of radial receiver functions are azimuthally inconsistent and unclear. From the receiver function inversion result, we found that crustal thickness is 29 km at INCN, SEO, and SOS (SES) stations, 28 km at KAN station in the Kyonggi Massif, 32 km at TEJ station in Okchon Folded Belt, 34 km at TAG, 33 km at PUS station in the Kyongsang Basin, 32 km at KWJ station (readjusted station by prior KWA station) included in the Youngdong-Kwangju Depression Zone, 28 km at ULC station in the eastern margin of the Ryongnam Massif, and 17 km at ULL station in the Ullung Island of the East Sea, respectively. The Moho configuration of INCN, SOS, KWJ, and KAN stations show a laminated smooth transition zone with a 3-5 km thick. The upper crusts(${\sim}5km$) of KAN, ULC, and PUS stations show complex structures with a high velocity. The unusually thick crusts are found at the TAG and PUS stations in the Kyongsang Basin compared to the thin (29-32 km) crust of the western part (INCN, SEO, SOS, TEJ, and KWA stations) The crustal thickness beneath Ullung Island (ULL station) shows the suboceanic crust with about 17 km thickness and complex with a high velocity layer of the upper crust, and the amplitudes of Incoming Ps waves from the western direction are relatively large compared to those from othor directions.

  • PDF

A Study for Factors Influencing the Usage Increase and Decrease of Mobile Data Service: Based on The Two Factor Theory (모바일 데이터 서비스 사용량 증감에 영향을 미치는 요인들에 관한 연구: 이요인 이론(Two Factor Theory)을 바탕으로)

  • Lee, Sang-Hoon;Kim, Il-Kyung;Lee, Ho-Geun;Park, Hyun-Jee
    • Asia pacific journal of information systems
    • /
    • v.17 no.2
    • /
    • pp.97-122
    • /
    • 2007
  • Conventional networking and telecommunications infrastructure characterized by wires, fixed location, and inflexibility is giving way to mobile technologies. Numerous research reports point to the ultimate domination of wireless communication. With the increasing prevalence of advanced cell-phones, various mobile data services (hereafter MDS) are gaining popularity. Although cellular networks were originally introduced for voice communications, statistics indicate that data services are replacing the matured voice service as the growth engine for telecom service providers. For example, SK Telecom, the Korea's largest mobile service provider, reported that 25.6% of revenue and 28.5% of profit came from MDS in 2006 and the share is growing. Statistics also indicate that, in 2006, the average revenue per user (ARPU) for voice didn't change but MDS grew seven percents from the previous year, further highlighting its growth potential. MDS is defined "as an assortment of digital data services that can be accessed using a mobile device over a wide geographic area." A variety of MDS have been deployed, with a few reaching the status of killer applications. Many of them need to access the Internet through the cellular-phone infrastructure. In the past, when the cellular network didn't have acceptable bandwidth for data services, SMS (short messaging service) dominated MDS. Now, Internet-ready, next-generation cell-phones are driving rich digital data services into the fabric of everyday life, These include news on various topics, Internet search, mapping and location-based information, mobile banking and gaming, downloading (i.e., screen savers), multimedia streaming, and various communication services (i.e., email, short messaging, messenger, and chaffing). The huge economic stake MDS has on its stakeholders warrants focused research to understand associated dynamics behind its adoption. Lyytinen and Yoo(2002) pointed out the limitation of traditional adoption models in explaining the rapid diffusion of innovations such as P2P or mobile services. Also, despite the increasing popularity of MDS, unexpected drop in its usage is observed among some people. Intrigued by these observations, an exploratory study was conducted to examine decision factors of MDS usage. Data analysis revealed that the increase and decrease of MDS use was influenced by different forces. The findings of the exploratory study triggered our confirmatory research effort to validate the uni-directionality of studied factors in affecting MDS usage. This differs from extant studies of IS/IT adoption that are largely grounded on the assumption of bi-directionality of explanatory variables in determining the level of dependent variables (i.e., user satisfaction, service usage). The research goal is, therefore, to examine if increase and decrease in the usage of MDS are explained by two separate groups of variables pertaining to information quality and system quality. For this, we investigate following research questions: (1) Does the information quality of MDS increase service usage?; (2) Does the system quality of MDS decrease service usage?; and (3) Does user motivation for subscribing MDS moderate the effect information and system quality have on service usage? The research questions and subsequent analysis are grounded on the two factor theory pioneered by Hertzberg et al(1959). To answer the research questions, in the first, an exploratory study based on 378 survey responses was conducted to learn about important decision factors of MDS usage. It revealed discrepancy between the influencing forces of usage increase and those of usage decrease. Based on the findings from the exploratory study and the two-factor theory, we postulated information quality as the motivator and system quality as the de-motivator (or hygiene) of MDS. Then, a confirmative study was undertaken on their respective role in encouraging and discouraging the usage of mobile data service.

True Orthoimage Generation from LiDAR Intensity Using Deep Learning (딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성)

  • Shin, Young Ha;Hyung, Sung Woong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.363-373
    • /
    • 2020
  • During last decades numerous studies generating orthoimage have been carried out. Traditional methods require exterior orientation parameters of aerial images and precise 3D object modeling data and DTM (Digital Terrain Model) to detect and recover occlusion areas. Furthermore, it is challenging task to automate the complicated process. In this paper, we proposed a new concept of true orthoimage generation using DL (Deep Learning). DL is rapidly used in wide range of fields. In particular, GAN (Generative Adversarial Network) is one of the DL models for various tasks in imaging processing and computer vision. The generator tries to produce results similar to the real images, while discriminator judges fake and real images until the results are satisfied. Such mutually adversarial mechanism improves quality of the results. Experiments were performed using GAN-based Pix2Pix model by utilizing IR (Infrared) orthoimages, intensity from LiDAR data provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the ISPRS (International Society for Photogrammetry and Remote Sensing). Two approaches were implemented: (1) One-step training with intensity data and high resolution orthoimages, (2) Recursive training with intensity data and color-coded low resolution intensity images for progressive enhancement of the results. Two methods provided similar quality based on FID (Fréchet Inception Distance) measures. However, if quality of the input data is close to the target image, better results could be obtained by increasing epoch. This paper is an early experimental study for feasibility of DL-based true orthoimage generation and further improvement would be necessary.

The PRISM-based Rainfall Mapping at an Enhanced Grid Cell Resolution in Complex Terrain (복잡지형 고해상도 격자망에서의 PRISM 기반 강수추정법)

  • Chung, U-Ran;Yun, Kyung-Dahm;Cho, Kyung-Sook;Yi, Jae-Hyun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • The demand for rainfall data in gridded digital formats has increased in recent years due to the close linkage between hydrological models and decision support systems using the geographic information system. One of the most widely used tools for digital rainfall mapping is the PRISM (parameter-elevation regressions on independent slopes model) which uses point data (rain gauge stations), a digital elevation model (DEM), and other spatial datasets to generate repeatable estimates of monthly and annual precipitation. In the PRISM, rain gauge stations are assigned with weights that account for other climatically important factors besides elevation, and aspects and the topographic exposure are simulated by dividing the terrain into topographic facets. The size of facet or grid cell resolution is determined by the density of rain gauge stations and a $5{\times}5km$ grid cell is considered as the lowest limit under the situation in Korea. The PRISM algorithms using a 270m DEM for South Korea were implemented in a script language environment (Python) and relevant weights for each 270m grid cell were derived from the monthly data from 432 official rain gauge stations. Weighted monthly precipitation data from at least 5 nearby stations for each grid cell were regressed to the elevation and the selected linear regression equations with the 270m DEM were used to generate a digital precipitation map of South Korea at 270m resolution. Among 1.25 million grid cells, precipitation estimates at 166 cells, where the measurements were made by the Korea Water Corporation rain gauge network, were extracted and the monthly estimation errors were evaluated. An average of 10% reduction in the root mean square error (RMSE) was found for any months with more than 100mm monthly precipitation compared to the RMSE associated with the original 5km PRISM estimates. This modified PRISM may be used for rainfall mapping in rainy season (May to September) at much higher spatial resolution than the original PRISM without losing the data accuracy.

The Impact of Education-Orientation on Technology Innovation and Company Outcome : Focusing on Korean Companies in China (기업의 교육지향성이 기술혁신과 기업성과에 미치는 영향 : 대 중국 투자 한국기업을 중심으로)

  • Kim, Jung Hoon;Lim, Young Taek
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.4
    • /
    • pp.231-249
    • /
    • 2014
  • We define $21^{st}$ century as an amalgamation of globalization and localization, or Glocalization. Additionally, due to the increasing supply of smart phones and wide usage of social networking services, the ability to utilize such global and regional information has increased a coperation's competitiveness in its market, and even the business models have evolved from the conventional "production and distribution" to E-commerce, through which either a direct or a non-direct transaction is possible. My hypothesis is that the ability to adapt to this trend is possible through transfer of learning, and consequently, this will have an impact on company's performance. Thus, this thesis analyzes the mid- to the long-term impact of such ability and environmental factors on the performance and technology innovation of Korean companies in China. Ultimately, this study intends to engender a basic foundation for a corporation's management strategy in China. Finally this research focuses on those Korean companies in China only and on the proof of influential factors' impact on technological innovation and technological innovation's impact on those corporations' future performances. Section I is an abstract and section II, the case examines the uniqueness and current status of Korean companies in China identifies the concept and the definition of influential factors such as education-orientation, technological innovation, and performance, and then scrutinizes each factors through a closer look at their past researches. Section III explains the thesis model, the survey's method and target, the thesis, variable factors, the content, and the method of analysis. In section IV, the thesis is proved based on the outcome of the survey. The result in Section V highlights the high comprehension of technological innovation: both education-orientation and technological innovation prove to have a positive (+) correlation with the performance. The vision on education orientation proves to have a positive (+) influence on technological innovation. The vision on education-orientation and technological innovation prove to have a positive (+) influence individually on company's performance.

A Plan to Activate the Archive of Maeul Communities (마을공동체 아카이브 활성화 방안)

  • Sohn, Dong-you;Lee, Kyoung-juhn
    • The Korean Journal of Archival Studies
    • /
    • no.35
    • /
    • pp.161-206
    • /
    • 2013
  • 'Maeul' is a concept connoting a community. As a place where ordinary people's lives are planned and realized, Maeul is the foundation of their daily lives as well as a place where they work, rest and enjoy pastime activities. In Korea, however, most Maeul communities are dismantled while going though the modern period representing colonization and developmental dictatorship. Growth-oriented industrialization and urbanization turned into such adverse effects as individualization, a sense of loss and a sense of alienation. Recently, through innovations from below, Maeuls are restored, and through Maeul communities restored this way, every Maeul and many researchers carry out activities to build a healthy civil society. This study was conducted on such a background. For a healthy restoration of Maeul communities and a sustainable operation of those communities, it is necessary to establish archives where record the trace of Maeul members' daily lives and relations between those members. The archive of Maeul communities is a place that contains each Maeul's local characteristics as well as human relations as well. It is because this place can be space where Maeul members can record their history, communicate with each other and make a better future. The archive of Maeul communities can be made into various different models, which can be operated by reflecting the identity of a community such as main agents and characteristics, objectives and orientation of objects recorded. Rather than when Maeul communities exist as individuals, they can display more important functions and better effect when they form a network. Therefore, it is needed to provide various and creative methodologies different from the existing government-led record management. Not only on the form of archives, but also all over their functions, such as collection, arrangement, classification, evaluation, management and utilization, Maeul and Maeul residents' norms, orientation and realistic conditions should be thoroughly reflected. Starting from a chance to look back at individuals' lives, the archive of Maeul communities will be a new chapter to restore and build a healthy community in our society and overcome social contradictions from below. Moreover, the archive of Maeul communities has a great significance that it will broaden its prospect creatively with a new paradigm, not only mechanically turning the existing public sector-centered record management into a non-governmental sector.

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

Deep Learning Approaches for Accurate Weed Area Assessment in Maize Fields (딥러닝 기반 옥수수 포장의 잡초 면적 평가)

  • Hyeok-jin Bak;Dongwon Kwon;Wan-Gyu Sang;Ho-young Ban;Sungyul Chang;Jae-Kyeong Baek;Yun-Ho Lee;Woo-jin Im;Myung-chul Seo;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.17-27
    • /
    • 2023
  • Weeds are one of the factors that reduce crop yield through nutrient and photosynthetic competition. Quantification of weed density are an important part of making accurate decisions for precision weeding. In this study, we tried to quantify the density of weeds in images of maize fields taken by unmanned aerial vehicle (UAV). UAV image data collection took place in maize fields from May 17 to June 4, 2021, when maize was in its early growth stage. UAV images were labeled with pixels from maize and those without and the cropped to be used as the input data of the semantic segmentation network for the maize detection model. We trained a model to separate maize from background using the deep learning segmentation networks DeepLabV3+, U-Net, Linknet, and FPN. All four models showed pixel accuracy of 0.97, and the mIOU score was 0.76 and 0.74 in DeepLabV3+ and U-Net, higher than 0.69 for Linknet and FPN. Weed density was calculated as the difference between the green area classified as ExGR (Excess green-Excess red) and the maize area predicted by the model. Each image evaluated for weed density was recombined to quantify and visualize the distribution and density of weeds in a wide range of maize fields. We propose a method to quantify weed density for accurate weeding by effectively separating weeds, maize, and background from UAV images of maize fields.