• Title/Summary/Keyword: Network models

Search Result 3,898, Processing Time 0.041 seconds

Bayesian networks-based probabilistic forecasting of hydrological drought considering drought propagation (가뭄의 전이 현상을 고려한 수문학적 가뭄에 대한 베이지안 네트워크 기반 확률 예측)

  • Shin, Ji Yae;Kwon, Hyun-Han;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.769-779
    • /
    • 2017
  • As the occurrence of drought is recently on the rise, the reliable drought forecasting is required for developing the drought mitigation and proactive management of water resources. This study developed a probabilistic hydrological drought forecasting method using the Bayesian Networks and drought propagation relationship to estimate future drought with the forecast uncertainty, named as the Propagated Bayesian Networks Drought Forecasting (PBNDF) model. The proposed PBNDF model was composed with 4 nodes of past, current, multi-model ensemble (MME) forecasted information and the drought propagation relationship. Using Palmer Hydrological Drought Index (PHDI), the PBNDF model was applied to forecast the hydrological drought condition at 10 gauging stations in Nakdong River basin. The receiver operating characteristics (ROC) curve analysis was applied to measure the forecast skill of the forecast mean values. The root mean squared error (RMSE) and skill score (SS) were employed to compare the forecast performance with previously developed forecast models (persistence forecast, Bayesian network drought forecast). We found that the forecast skill of PBNDF model showed better performance with low RMSE and high SS of 0.1~0.15. The overall results mean the PBNDF model had good potential in probabilistic drought forecasting.

The Study for Estimating Traffic Volumes on Urban Roads Using Spatial Statistic and Navigation Data (공간통계기법과 내비게이션 자료를 활용한 도시부 도로 교통량 추정연구)

  • HONG, Dahee;KIM, Jinho;JANG, Doogik;LEE, Taewoo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.220-233
    • /
    • 2017
  • Traffic volumes are fundamental data widely used in various traffic analysis, such as origin-and-destination establishment, total traveled kilometer distance calculation, congestion evaluation, and so on. The low number of links collecting the traffic-volume data in a large urban highway network has weakened the quality of the analyses in practice. This study proposes a method to estimate the traffic volume data on a highway link where no collection device is available by introducing a spatial statistic technique with (1) the traffic-volume data from TOPIS, and National Transport Information Center in the Ministry of Land, Infrastructure, and (2) the navigation data from private navigation. Two different component models were prepared for the interrupted and the uninterrupted flows respectively, due to their different traffic-flow characteristics: the piecewise constant function and the regression kriging. The comparison of the traffic volumes estimated by the proposed method against the ones counted in the field showed that the level of error includes 6.26% in MAPE and 5,410 in RMSE, and thus the prediction error is 20.3% in MAPE.

Changes in the Concept of Disability and its Implications for Social Work Practice (장애개념의 변화와 사회복지실천 현장 함의)

  • Kim, Yong-Deug
    • Korean Journal of Social Welfare
    • /
    • v.51
    • /
    • pp.157-182
    • /
    • 2002
  • This study attempts to identify the changes in social reactions to disabilities in general, and to research the contextual implication of these changes in social work practice in Korea. In the early years after the Industrial Revolution, disability was conceived as social unfitness and it was assumed that the cause and responsibility could be attributed to people with disabilities. But, in the midst and late 20th century, social responsibility for people with disabilities was argued and generally accepted. As the results of these changes, conceptual models explaining disabilities have changed gradually; there has been a transition, so called, from individual model to social model. In a similar vein, WHO has refined the definition and classification of disability. Related to these changes, social welfare service paradigm for people with disabilities has shifted. This paradigm shift can be explained with the perspective of strength approach, empowerment approach, case management and independent living model. In Korea, 1998 Act on welfare for people with disabilities meant that social service for the disabled were categorized with, namely, residential service, community rehabilitation service and vocational rehabilitation service. Recently, the extent of these services has been rapidly broadened. In these situation, this study researched to identify the implications on social work practice in the context of changes in social response, conceptual model, definition and also service paradigm. Such as the followings are enumerated for the implications: disabled person's participation in assessment process, development of assessment tools focusing on social and environmental perspectives, reinforcement of information service helping self-determination, supporting on formal and informal helping network, expanding self-help programs and, finally, a shift from displacement model to support model.

  • PDF

Estimation of Duck House Litter Evaporation Rate Using Machine Learning (기계학습을 활용한 오리사 바닥재 수분 발생량 분석)

  • Kim, Dain;Lee, In-bok;Yeo, Uk-hyeon;Lee, Sang-yeon;Park, Sejun;Decano, Cristina;Kim, Jun-gyu;Choi, Young-bae;Cho, Jeong-hwa;Jeong, Hyo-hyeog;Kang, Solmoe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.77-88
    • /
    • 2021
  • Duck industry had a rapid growth in recent years. Nevertheless, researches to improve duck house environment are still not sufficient enough. Moisture generation of duck house litter is an important factor because it may cause severe illness and low productivity. However, the measuring process is difficult because it could be disturbed with animal excrements and other factors. Therefore, it has to be calculated according to the environmental data around the duck house litter. To cut through all these procedures, we built several machine learning regression model forecasting moisture generation of litter by measured environment data (air temperature, relative humidity, wind velocity and water contents). 5 models (Multi Linear Regression, k-Nearest Neighbors, Support Vector Regression, Random Forest and Deep Neural Network). have been selected for regression. By using R-Square, RMSE and MAE as evaluation metrics, the best accurate model was estimated according to the variables for each machine learning model. In addition, to address the small amount of data acquired through lab experiments, bootstrapping method, a technique utilized in statistics, was used. As a result, the most accurate model selected was Random Forest, with parameters of n-estimator 200 by bootstrapping the original data nine times.

Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model (기계학습 기반 전력망 상태예측 모델 성능 유지관리 자동화 기법)

  • Lee, Haesung;Lee, Byunsung;Moon, Sangun;Kim, Junhyuk;Lee, Heysun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.413-418
    • /
    • 2020
  • It is necessary to manage the prediction accuracy of the machine learning model to prevent the decrease in the performance of the grid network condition prediction model due to overfitting of the initial training data and to continuously utilize the prediction model in the field by maintaining the prediction accuracy. In this paper, we propose an automation technique for maintaining the performance of the model, which increases the accuracy and reliability of the prediction model by considering the characteristics of the power grid state data that constantly changes due to various factors, and enables quality maintenance at a level applicable to the field. The proposed technique modeled a series of tasks for maintaining the performance of the power grid condition prediction model through the application of the workflow management technology in the form of a workflow, and then automated it to make the work more efficient. In addition, the reliability of the performance result is secured by evaluating the performance of the prediction model taking into account both the degree of change in the statistical characteristics of the data and the level of generalization of the prediction, which has not been attempted in the existing technology. Through this, the accuracy of the prediction model is maintained at a certain level, and further new development of predictive models with excellent performance is possible. As a result, the proposed technique not only solves the problem of performance degradation of the predictive model, but also improves the field utilization of the condition prediction model in a complex power grid system.

A Study on Korean Firms' Outward FDIs to China (중국 내 순차적 직접투자와 경영 전략적 특성에 관한 연구)

  • Yim, Hyung-Rok;Chung, Wonjin
    • International Area Studies Review
    • /
    • v.18 no.3
    • /
    • pp.47-66
    • /
    • 2014
  • A noticeable aspect of Korean firms' outward sequential FDIs to China is that they occur sequentially, which means that they implement the outward FDIs to China with a long-term perspective. To analyze the strategic advantages of sequential investment, we introduce Cournot type quantity competition model. According to the model, three important implications are derived. First, sequential FDIs enhances the Korean parents' production capabilities. Second, the parents are more likely to establish new Chinese subsidiaries as they stay longer in China. Third, the production effect of sequential investments incurs more sequential investments. Some regression models are tested for verifying the predictions. According to empirical results, three important results are found. First, initial entry mode affects the size expansion of the Korean parents. Second, the longer the duration of intial subsidiary in China, the more the sequential investment will be. Third, sequential investments are positively associated with the productivity of the Korean parents.

Real-time PM10 Concentration Prediction LSTM Model based on IoT Streaming Sensor data (IoT 스트리밍 센서 데이터에 기반한 실시간 PM10 농도 예측 LSTM 모델)

  • Kim, Sam-Keun;Oh, Tack-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.310-318
    • /
    • 2018
  • Recently, the importance of big data analysis is increasing as a large amount of data is generated by various devices connected to the Internet with the advent of Internet of Things (IoT). Especially, it is necessary to analyze various large-scale IoT streaming sensor data generated in real time and provide various services through new meaningful prediction. This paper proposes a real-time indoor PM10 concentration prediction LSTM model based on streaming data generated from IoT sensor using AWS. We also construct a real-time indoor PM10 concentration prediction service based on the proposed model. Data used in the paper is streaming data collected from the PM10 IoT sensor for 24 hours. This time series data is converted into sequence data consisting of 30 consecutive values from time series data for use as input data of LSTM. The LSTM model is learned through a sliding window process of moving to the immediately adjacent dataset. In order to improve the performance of the model, incremental learning method is applied to the streaming data collected every 24 hours. The linear regression and recurrent neural networks (RNN) models are compared to evaluate the performance of LSTM model. Experimental results show that the proposed LSTM prediction model has 700% improvement over linear regression and 140% improvement over RNN model for its performance level.

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

Derivation of Synergistic Aerosol Model by Using the ECMWF/MACC and OPAC (ECMWF/MACC와 OPAC자료를 이용한 시너지 에어로솔 모델 산출)

  • Lee, Kwon-Ho;Lee, Kyu-Tae;Mun, Gwan-Ho;Kim, Jung-ho;Jung, Kyoung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.857-868
    • /
    • 2018
  • The microphysics and spatio-temporal distribution of atmospheric aerosols are responsible for estimating the optical properties at a given location. Its accurate estimation is essential to plan efficient simulation for radiative transfer. For this sake, synergetic use of reanalysis data with optics database was used as a potential tool to precisely derive the aerosol model on the basis of the major representative particulates exist within a model grid. In detail, mixing of aerosol types weighted by aerosol optical depth (AOD) components has been developed. This synergetic aerosol model (SAM) is spectrally extended up to $40{\mu}m$. For the major aerosol event cases, SAM showed that the mixed aerosol particles were totally different from the typical standard aerosol models provided by the radiative transfer model. The correlation among the derived aerosol optical properties along with ground-based observation data has also been compared. The current results will help to improve the radiative transfer model simulation under the real atmospheric environment.

Predicting Corporate Bankruptcy using Simulated Annealing-based Random Fores (시뮬레이티드 어니일링 기반의 랜덤 포레스트를 이용한 기업부도예측)

  • Park, Hoyeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.155-170
    • /
    • 2018
  • Predicting a company's financial bankruptcy is traditionally one of the most crucial forecasting problems in business analytics. In previous studies, prediction models have been proposed by applying or combining statistical and machine learning-based techniques. In this paper, we propose a novel intelligent prediction model based on the simulated annealing which is one of the well-known optimization techniques. The simulated annealing is known to have comparable optimization performance to the genetic algorithms. Nevertheless, since there has been little research on the prediction and classification of business decision-making problems using the simulated annealing, it is meaningful to confirm the usefulness of the proposed model in business analytics. In this study, we use the combined model of simulated annealing and machine learning to select the input features of the bankruptcy prediction model. Typical types of combining optimization and machine learning techniques are feature selection, feature weighting, and instance selection. This study proposes a combining model for feature selection, which has been studied the most. In order to confirm the superiority of the proposed model in this study, we apply the real-world financial data of the Korean companies and analyze the results. The results show that the predictive accuracy of the proposed model is better than that of the naïve model. Notably, the performance is significantly improved as compared with the traditional decision tree, random forests, artificial neural network, SVM, and logistic regression analysis.