잡음이 중첩된 음성으로부터 잡음을 제거하기 위해서는, 잡음의 크기에 따라서 음성처리 시스템의 매개변수를 변경하는 것이 양호한 음질의 음성을 재생하는데 바람직하다. 본 논문은 백색잡음 및 자동차의 주행잡음에 의해 저하된 3단계의 음성을 학습할 수 있는 3층 구조의 신경회로망을 사용하여, 음성 중의 잡음량의 크기를 추정하는 방식을 제안한다. 실험결과, 제안한 방법은 신경회로망에 의해서 잡음량이 추정될 수 있는 것을 알 수 있었으며, 화자와 음성 데이터가 학습데이터와 다르더라도 백색잡음에 대해서 평균 $95\%$ 이상의 높은 잡음 추정율을 구할 수 있었다.
Recently the boundary element method has been developed swiftly. The boundary element method is an efficient and accurate means for analysis of two dimensional elastic crack problems. This paper is concerned with the evaluation and the prediction of the stress intensity factor(SIF) for the crack emanating from the circular hole using boundary element method-neural network. The SIF of the crack emanating from the hole was calculated by using boundary element method. Neural network is used to evaluate and to predict SIF from the results of boundary element method. The organized neural network system (structure of four processing element) was learned with the accuracy 99%. The learned neural network system could be evaluated and predicted with the accuracy of 83.3% and 71.4% (in cases of SIF and virtual SIF). Thus the proposed boundary element method-neural network is very useful to estimate the SIF.
LiDAR technology is a combination of laser ranging, satellite positioning technology and digital image technology for study and determination with high accuracy of the true earth surface features in 3 D. Laser scanning data is typically a points cloud on the ground, including coordinates, altitude and intensity of laser from the object on the ground to the sensor (Wehr & Lohr, 1999). Data from laser scanning can produce products such as digital elevation model (DEM), digital surface model (DSM) and the intensity data. In Vietnam, the LiDAR technology has been applied since 2005. However, the application of LiDAR in Vietnam is mostly for topological mapping and DEM establishment using point cloud 3D coordinate. In this study, another application of LiDAR data are present. The study use the intensity image combine with some other data sets (elevation data, Panchromatic image, RGB image) in Bacgiang City to perform land cover classification using neural network method. The results show that it is possible to obtain land cover classes from LiDAR data. However, the highest accurate classification can be obtained using LiDAR data with other data set and the neural network classification is more appropriate approach to conventional method such as maximum likelyhood classification.
A current intensity convertible CLD chip was fabricated using small and large FET cell configuration. Pinch-off current of 8.82 mA and 11.56 mA were obtained for small and large cell in the CLD chip, respectively. Constant current was fairly maintained until the breakdown voltage of 60 V. Measured knee voltage, $V_k$ were 3.8 V and 4.5 V for small and large cell, respectively. We configured current amplifying chip with parallel connection of each cells, by connecting 8 individual large cells in parallel network, 92.0 mA of current was obtained. The pinch-off constant current of CLD chip was varied very linearly with respect to the number of parallel connected cell.
Embedded industry has emerged as one of the important industry for u-IT based application service. Technology development related to embedded hardware and software provides the base for the development of U-IT convergence industry. This study intends to suggest a research model to investigate the influence of industry, organization, technology factors on technology performance in the embedded companies. This study adopted research variables such as global network, local network, industry intensity, and technology capability as independent variables, with technology performance as a dependent variable from the existing literatures. The purpose of this study is to analyze the influence of industrial and organizational factors on technology performance of embedded companies SCM systems, including the moderating effect of government support. 94 companies data were collected by survey. The result of this empirical study is summarized as follows. First, local network and technology capability are the important determinants to influence technology performance of embedded companies in direct effect model. Second, global network and industry intensity has more positive influence on technology performance of embedded companies through a moderating variable of government support.
본 연구는 최고경영자와 이사회의 네트워크밀도와 R&D투자 간의 관계와 이들 관계에 영향을 미칠 수 있는 기업분할의 유형과 제도의 영향을 분석하는데 주된 목적을 두고 실행되었다. 연구목적의 달성을 위해 외환위기가 발생하고 기업분할 관련법(상법 530조)이 제정된 직후인 1999년부터 가장 최근의 자료수집이 가능한 2016년까지 총 18년의 연구기간 동안 기업분할을 실행한 국내기업들을 대상으로 다중회귀분석을 실행하였다, 분석결과는 국내기업 최고경영자와 이사회의 네트워크밀도와 R&D투자 간에 유의한 정(+)의 관계가 있음을 보여주고 있다. 또한 기업분할 유형과 관련하여 최고경영자와 이사회의 네트워크밀도와 R&D투자 간의 정의 관계는 비관련분할에서 보다 관련분할을 실행한 기업에서 강화되었음을 보여주고 있으며, 기업분할 제도와 관련해서는 물적분할보다 인적분할을 실행한 기업들에서 이들 관계가 강화되었음을 보여주고 있다. 신속한 의사결정이 요구되는 사안임에도 불구하고 장기적인 관점에서 높은 수준의 불확실성과 위험을 수반하게 되는 R&D투자결정에 있어 최고경영자와 이사회 간의 네트워크밀도가 긍정적인 영향을 미칠 수 있음을 보여주는 본 연구의 분석결과는 최고경영진들 간의 신뢰의 중요성을 강조해 온 네트워크이론의 주장과 일치한다. 또한 혁신역량 강화를 위한 R&D투자결정에 있어 개인수준의 요인들뿐만 아니라 조직수준의 요인이 함께 고려되어야 함을 시사하고 있다. 본 연구는 향후 기업분할의 활용을 통한 보다 전략적인 국내기업 지배구조의 개선방안에 대한 연구를 강화하는 동기를 제공해 줄 수 있을 것으로 기대된다.
Communications for Statistical Applications and Methods
/
제30권1호
/
pp.95-107
/
2023
Purpose: The statistical analysis of point processes on linear networks is a recent area of research that studies processes of events happening randomly in space (or space-time) but with locations limited to reside on a linear network. For example, traffic accidents happen at random places that are limited to lying on a network of streets. This paper applies techniques developed for point processes on linear networks and the tools available in the R-package spatstat to estimate the intensity of traffic accidents in Leon County, Florida. Methods: The intensity of accidents on the linear network of streets is estimated using log-linear Poisson models which incorporate cubic basis spline (B-spline) terms which are functions of the x and y coordinates. The splines used equally-spaced knots. Ten different models are fit to the data using a variety of covariates. The models are compared with each other using an analysis of deviance for nested models. Results: We found all covariates contributed significantly to the model. AIC and BIC were used to select 9 as the number of knots. Additionally, covariates have different effects such as increasing the speed limit would decrease traffic accident intensity by 0.9794 but increasing the number of lanes would result in an increase in the intensity of traffic accidents by 1.086. Conclusion: Our analysis shows that if other conditions are held fixed, the number of accidents actually decreases on roads with higher speed limits. The software we currently use allows our models to contain only spatial covariates and does not permit the use of temporal or space-time covariates. We would like to extend our models to include such covariates which would allow us to include weather conditions or the presence of special events (football games or concerts) as covariates.
Many potential small wind turbine locations are near obstacles such as buildings and shelterbelts, which can have a significant, detrimental effect on the local wind climate. A neural network-based model has been developed which predicts mean wind speed and turbulence intensity at points in an obstacle's region of influence, relative to unsheltered conditions. The neural network was trained using measurements collected in the wakes of 18 scale building models exposed to a simulated rural atmospheric boundary layer in a wind tunnel. The model obstacles covered a range of heights, widths, depths, and roof pitches typical of rural buildings. A field experiment was conducted using three unique full scale obstacles to validate model predictions and wind tunnel measurements. The accuracy of the neural network model varies with the quantity predicted and position in the obstacle wake. In general, predictions of mean velocity deficit in the far wake region are most accurate. The overall estimated mean uncertainties associated with model predictions of normalized mean wind speed and turbulence intensity are 4.9% and 12.8%, respectively.
This paper examined the effect of innovation networks comprising research and development (R&D) collaboration on innovation performance of Korean pharmaceutical firms. As co-assigned patents and co-affiliated publications are common technical outcomes of successful R&D collaboration in the pharmaceutical industry, social network analysis technique was applied for analyzing innovation networks through patent and publication data. Results of Social network analysis indicated that a small set of highly innovative firms in the Korean pharmaceutical industry were actively involved in patenting and publishing. And the analysis of structural equation model found the followings: (1) R&D intensity significantly affected patenting, publication and new drug development, (2) the activity of patenting and publishing was positively related with the innovation performance measured by new drug development, and (3) R&D collaboration in terms of degree centrality of co-patent network played significant moderating roles on the relationships among R&D intensity, patenting, and new drug development. These findings are expected to be helpful to researchers as well as policy-makers to devise innovation-promoting policies in the Korean pharmaceutical industry. Discussions and limitations of the study are provided in the last part.
본 논문은 symmetric balance incomplete block design(BIBD) code와 arrayed-waveguide grating(AWG) router의 주기적인 특성을 이용하여 optical CDMA network을 위한 coder-decoder(codec)을 구성하였다. 기존의 M-sequence code를 이용한 경우보다 다양한 구성을 할 수 있고 이 시스템의 잡음인 phase-induced intensity noise(PIIN)와 thermal noise를 분석하여 BER을 계산한 결과 향상된 성능을 보임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.