• Title/Summary/Keyword: Network graph

Search Result 703, Processing Time 0.028 seconds

Enhancement of Railway Graph for Representing Othogonal Railway Crossing in a Track Network (철도 네트워크에서 직교 교차선로 표현을 위한 선로그래프의 개선)

  • Cho, Dong-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.4
    • /
    • pp.61-69
    • /
    • 2003
  • RG(Railway Graph), which is a connected graph structure with the concepts of internal and external edges, is a data structure for representing railway assignments in a track network. In RG, it is possible to represent railway connectivities considering it's forward direction which is impossible in a digraph representation. But with RC, we can not still represent an othogonoal railway crossing in a track network. In this paper, we extend RG using the concept of dummy edge. Using ERG(Extended Railway Graph), we describe a method to consistently represent track network including othogonoal railway crossings, data structure for our ERG, and path allocation algorithm in ERG.

  • PDF

A Genetic Algorithm for Directed Graph-based Supply Network Planning in Memory Module Industry

  • Wang, Li-Chih;Cheng, Chen-Yang;Huang, Li-Pin
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.227-241
    • /
    • 2010
  • A memory module industry's supply chain usually consists of multiple manufacturing sites and multiple distribution centers. In order to fulfill the variety of demands from downstream customers, production planners need not only to decide the order allocation among multiple manufacturing sites but also to consider memory module industrial characteristics and supply chain constraints, such as multiple material substitution relationships, capacity, and transportation lead time, fluctuation of component purchasing prices and available supply quantities of critical materials (e.g., DRAM, chip), based on human experience. In this research, a directed graph-based supply network planning (DGSNP) model is developed for memory module industry. In addition to multi-site order allocation, the DGSNP model explicitly considers production planning for each manufacturing site, and purchasing planning from each supplier. First, the research formulates the supply network's structure and constraints in a directed-graph form. Then, a proposed genetic algorithm (GA) solves the matrix form which is transformed from the directed-graph model. Finally, the final matrix, with a calculated maximum profit, can be transformed back to a directed-graph based supply network plan as a reference for planners. The results of the illustrative experiments show that the DGSNP model, compared to current memory module industry practices, determines a convincing supply network planning solution, as measured by total profit.

Network Graph Analysis of Gene-Gene Interactions in Genome-Wide Association Study Data

  • Lee, Sungyoung;Kwon, Min-Seok;Park, Taesung
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.256-262
    • /
    • 2012
  • Most common complex traits, such as obesity, hypertension, diabetes, and cancers, are known to be associated with multiple genes, environmental factors, and their epistasis. Recently, the development of advanced genotyping technologies has allowed us to perform genome-wide association studies (GWASs). For detecting the effects of multiple genes on complex traits, many approaches have been proposed for GWASs. Multifactor dimensionality reduction (MDR) is one of the powerful and efficient methods for detecting high-order gene-gene ($G{\times}G$) interactions. However, the biological interpretation of $G{\times}G$ interactions identified by MDR analysis is not easy. In order to aid the interpretation of MDR results, we propose a network graph analysis to elucidate the meaning of identified $G{\times}G$ interactions. The proposed network graph analysis consists of three steps. The first step is for performing $G{\times}G$ interaction analysis using MDR analysis. The second step is to draw the network graph using the MDR result. The third step is to provide biological evidence of the identified $G{\times}G$ interaction using external biological databases. The proposed method was applied to Korean Association Resource (KARE) data, containing 8838 individuals with 327,632 single-nucleotide polymorphisms, in order to perform $G{\times}G$ interaction analysis of body mass index (BMI). Our network graph analysis successfully showed that many identified $G{\times}G$ interactions have known biological evidence related to BMI. We expect that our network graph analysis will be helpful to interpret the biological meaning of $G{\times}G$ interactions.

Analysis of the network robustness based on the centrality of vertices in the graph

  • Jeong, Changkwon;Han, Chi-Geun;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.61-67
    • /
    • 2017
  • This paper analyzes the robustness of the network based on the centrality of vertices in the graph. In this paper, a random graph is generated and a modified graph is constructed by adding or removing vertices or edges in the generated random graph. And then we analyze the robustness of the graph by observing changes in the centrality of the random graph and the modified graph. In the process modifying a graph, we changes some parts of the graph, which has high values of centralities, not in the whole. We study how these additional changes affect the robustness of the graph when changes occurring a group that has higher centralities than in the whole.

Frequency Assignment Method using NFD and Graph Coloring for Backbone Wireless Links of Tactical Communications Network (통합 필터 변별도와 그래프 컬러링을 이용한 전술통신망 백본 무선 링크의 주파수 지정 방법)

  • Ham, Jae-Hyun;Park, Hwi-Sung;Lee, Eun-Hyoung;Choi, Jeung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.441-450
    • /
    • 2015
  • The tactical communications network has to be deployed rapidly at military operation area and support the communications between the military command systems and the weapon systems. For that, the frequency assignment is required for backbone wireless links of tactical communications network without frequency interferences. In this paper, we propose a frequency assignment method using net filter discrimination (NFD) and graph coloring to avoid frequency interferences. The proposed method presents frequency assignment problem of tactical communications network as vertex graph coloring problem of a weighted graph. And it makes frequency assignment sequences and assigns center frequencies to communication links according to the priority of communication links and graph coloring. The evaluation shows that this method can assign center frequencies to backbone communication links without frequency interferences. It also shows that the method can improve the frequency utilization in comparison with HTZ-warfare that is currently used by Korean Army.

Passive sonar signal classification using graph neural network based on image patch (영상 패치 기반 그래프 신경망을 이용한 수동소나 신호분류)

  • Guhn Hyeok Ko;Kibae Lee;Chong Hyun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.234-242
    • /
    • 2024
  • We propose a passive sonar signal classification algorithm using Graph Neural Network (GNN). The proposed algorithm segments spectrograms into image patches and represents graphs through connections between adjacent image patches. Subsequently, Graph Convolutional Network (GCN) is trained using the represented graphs to classify signals. In experiments with publicly available underwater acoustic data, the proposed algorithm represents the line frequency features of spectrograms in graph form, achieving an impressive classification accuracy of 92.50 %. This result demonstrates a 8.15 % higher classification accuracy compared to conventional Convolutional Neural Network (CNN).

HAMILTONIAN PROPERTIES OF ENHANCED HONEYCOMB NETWORKS

  • M. SOMASUNDARI;A. RAJKUMAR;F. SIMON RAJ;A. GEORGE
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.761-775
    • /
    • 2024
  • A cycle in a graph G that contains all of its vertices is said to be the Hamiltonian cycle of that graph. A Hamiltonian graph is one that has a Hamiltonian cycle. This article discusses how to create a new network from an existing one, such as the Enhanced Honeycomb Network EHC(n), which is created by adding six new edges to each layer of the Honeycomb Network HC(n). Enhanced honeycomb networks have 9n2 + 3n - 6 edges and 6n2 vertices. For every perfect sub-Honeycombe topology, this new network features six edge disjoint Hamiltonian cycles, which is an advantage over Honeycomb. Its diameter is (2n + 1), which is nearly 50% lesser than that of the Honeycomb network. Using 3-bit grey code, we demonstrated that the Enhanced Honeycomb Network EHC(n) is Hamiltonian.

ANIDS(Advanced Network Based Intrusion Detection System) Design Using Association Rule Mining (연관법칙 마이닝(Association Rule Mining)을 이용한 ANIDS (Advanced Network Based IDS) 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2287-2297
    • /
    • 2007
  • The proposed ANIDS(Advanced Network Intrusion Detection System) which is network-based IDS using Association Rule Mining, collects the packets on the network, analyze the associations of the packets, generates the pattern graph by using the highly associated packets using Association Rule Mining, and detects the intrusion by using the generated pattern graph. ANIDS consists of PMM(Packet Management Module) collecting and managing packets, PGGM(Pattern Graph Generate Module) generating pattern graphs, and IDM(Intrusion Detection Module) detecting intrusions. Specially, PGGM finds the candidate packets of Association Rule large than $Sup_{min}$ using Apriori algorithm, measures the Confidence of Association Rule, and generates pattern graph of association rules large than $Conf_{min}$. ANIDS reduces the false positive by using pattern graph even before finalizing the new pattern graph, the pattern graph which is being generated is compared with the existing one stored in DB. If they are the same, we can estimate it is an intrusion. Therefore, this paper can reduce the speed of intrusion detection and the false positive and increase the detection ratio of intrusion.

Deep Neural Network-Based Scene Graph Generation for 3D Simulated Indoor Environments (3차원 가상 실내 환경을 위한 심층 신경망 기반의 장면 그래프 생성)

  • Shin, Donghyeop;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.5
    • /
    • pp.205-212
    • /
    • 2019
  • Scene graph is a kind of knowledge graph that represents both objects and their relationships found in a image. This paper proposes a 3D scene graph generation model for three-dimensional indoor environments. An 3D scene graph includes not only object types, their positions and attributes, but also three-dimensional spatial relationships between them, An 3D scene graph can be viewed as a prior knowledge base describing the given environment within that the agent will be deployed later. Therefore, 3D scene graphs can be used in many useful applications, such as visual question answering (VQA) and service robots. This proposed 3D scene graph generation model consists of four sub-networks: object detection network (ObjNet), attribute prediction network (AttNet), transfer network (TransNet), relationship prediction network (RelNet). Conducting several experiments with 3D simulated indoor environments provided by AI2-THOR, we confirmed that the proposed model shows high performance.