• Title/Summary/Keyword: Network faults

Search Result 361, Processing Time 0.022 seconds

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Neural Network and the Variation of Fault Currents (신경회로망과 고장전류의 변화를 이용한 고장판별 알고리즘에 관한 연구)

  • Yeo, Sang-Min;Kim, Cheol-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.405-411
    • /
    • 2000
  • When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper propolsed the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.

  • PDF

Computer Aided Identification of Inter-Layer Faults in Gas Insulated Capacitively Graded Bushing during Switching

  • Rao, M.Mohana;Dharani, P.;Rao, T. Prasad
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.28-34
    • /
    • 2009
  • In a Gas Insulated Substation (GIS), Very Fast Transients (VFTs) are generated mainly due to switching operations. These transients may cause internal faults, i.e., layer-to-layer faults in a capacitively graded bushing as it is one of the most important terminal equipment for GIS. The healthiness of the bushing is generally verified by measuring its leakage current. However, the change in current magnitude/pattern is only marginal for different types of fault conditions. Leakage current monitoring (LCM) systems generate large amounts of data and computer aided interpretation of defects may be of great assistance when analyzing this data. In view of the above, ANN techniques have been used in this study for identification of these minor faults. A single layer perceptron network, a two layer feed-forward back propagation network and cascade correlation (CC) network models are used to identify interlayer faults in the bushing. The effectiveness of the CC network over perceptron and back propagation networks in identification of a fault has been analysed as part of the paper.

Fault Tolerant Clock Management Scheme in Sensor Networks (센서 네트워크에서 고장 허용 시각 관리 기법)

  • Hwang So-Young;Baek Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.868-877
    • /
    • 2006
  • Sensor network applications need synchronized time to the highest degree such as object tracking, consistent state updates, duplicate detection, and temporal order delivery. In addition, reliability issues and fault tolerance in sophisticated sensor networks have become a critical area of research today. In this paper, we proposed a fault tolerant clock management scheme in sensor networks considering two cases of fault model such as network faults and clock faults. The proposed scheme restricts the propagation of synchronization error when there are clock faults of nodes such as rapid fluctuation, severe changes in drift rate, and so on. In addition, it handles topology changes. Simulation results show that the proposed method has about $1.5{\sim}2.0$ times better performance than TPSN in the presence of faults.

Neural Network Based Dissolved Gas Analysis Using Gas Composition Patterns Against Fault Causes

  • J. H. Sun;Kim, K. H.;P. B. Ha
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.130-135
    • /
    • 2003
  • This study describes neural network based dissolved gas analysis using composition patterns of gas concentrations for transformer fault diagnosis. DGA samples were gathered from related literatures and classified into six types of faults and then a neural network was trained using the DGA samples. Diagnosis tests were performed by the trained neural network with DGA samples of serviced transformers, fault causes of which were identified by actual inspection. Diagnosis results by the neural network were in good agreement with actual faults.

A Fast Automatic Test Pattern Generator Using Massive Parallelism (대량의 병렬성을 이용한 고속 자동 테스트 패턴 생성기)

  • 김영오;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.661-670
    • /
    • 1995
  • This paper presents a fast massively parallel automatic test pattern generator for digital combinational logic circuits using neural networks. Automatic test pattern generation neural network(ATPGNN) evolves its state to a stable local minima by exchanging messages among neural network modules. In preprocessing phase, we calculate the essential assignments for the stuck-at faults in fault list by adopting dominator concept. It makes more neurons be fixed and the system speed up. Consequently. fast test pattern generation is achieved. Test patterns for stuck-open faults are generated through getting initialization patterns for the obtained stuck-at faults in the corresponding ATPGNN.

  • PDF

Multiple faults diagnosis of a linear system using ART2 neural networks (ART2 신경회로망을 이용한 선형 시스템의 다중고장진단)

  • Lee, In-Soo;Shin, Pil-Jae;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.244-251
    • /
    • 1997
  • In this paper, we propose a fault diagnosis algorithm to detect and isolate multiple faults in a system. The proposed fault diagnosis algorithm is based on a multiple fault classifier which consists of two ART2 NN(adaptive resonance theory2 neural network) modules and the algorithm is composed of three main parts - parameter estimation, fault detection and isolation. When a change in the system occurs, estimated parameters go through a transition zone in which residuals between the system output and the estimated output cross the threshold, and in this zone, estimated parameters are transferred to the multiple faults classifier for fault isolation. From the computer simulation results, it is verified that when the proposed diagnosis algorithm is performed successfully, it detects and isolates faults in the position control system of a DC motor.

  • PDF

A Study on the Algorithm for Fault Discrimination in Transmission Lines Using Neural Network and the Variation of Fault Currents (신경회로망과 고장전류의 변화를 이용한 고장판별 알고리즘에 관한 연구)

  • Yeo, Sang-Min;Kim, Chul-Hwan;Choi, Myeon-Song;Song, Oh-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.366-368
    • /
    • 2000
  • When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper proposes the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.

  • PDF

A Novel Algorithm for Fault Classification in Transmission Lines Using a Combined Adaptive Network and Fuzzy Inference System

  • Yeo, Sang-Min;Kim, Chun-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.191-197
    • /
    • 2003
  • Accurate detection and classification of faults on transmission lines is vitally important. In this respect, many different types of faults occur, such as inter alia low impedance faults (LIF) and high impedance faults (HIF). The latter in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if undetected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. Because of the randomness and asymmetric characteristics of HIFs, their modeling is difficult and numerous papers relating to various HIF models have been published. In this paper, the model of HIFs in transmission lines is accomplished using the characteristics of a ZnO arrester, which is then implemented within the overall transmission system model based on the electromagnetic transients program (EMTP). This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System (ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square (RMS) values of 3-phase currents and zero sequence current. The performance of the proposed algorithm is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results demonstrate that the ANFIS can detect and classify faults including LIFs and HIFs accurately within half a cycle.

Fault Diagnosis for a System Using Classified Pattern and Neural Networks (분류패턴과 신경망을 이용한 시스템의 고장진단)

  • Lee, Jin-Ha;Park, Seong-Wook;Seo, Bo-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.12
    • /
    • pp.643-650
    • /
    • 2000
  • Using neural network approach, the diagnosis of faults in industrial process that requires observing multiple data simultaneously are studied. Two-stage diagnosis is proposed to analyze system faults. By using neural network, the first stage detects the dynamic trend of each normalized date patterns by comparing a proposed pattern. Instead of using neural network, the difference between stored fault pattern and real time data is used for fault diagnosis in the second stage. This method reduces the amount of calculation and saves storing space. Also, we dealt with unknown faults by normalizing the data and calculating the difference between the value of steady state and the data in case of fault. A model of tank reactor is given to verify that the proposed method is useful and effective to noise.

  • PDF