• Title/Summary/Keyword: Network energy

Search Result 3,748, Processing Time 0.028 seconds

Outage Analysis and Optimization for Time Switching-based Two-Way Relaying with Energy Harvesting Relay Node

  • Du, Guanyao;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.545-563
    • /
    • 2015
  • Energy harvesting (EH) and network coding (NC) have emerged as two promising technologies for future wireless networks. In this paper, we combine them together in a single system and then present a time switching-based network coding relaying (TSNCR) protocol for the two-way relay system, where an energy constrained relay harvests energy from the transmitted radio frequency (RF) signals from two sources, and then helps the two-way relay information exchange between the two sources with the consumption of the harvested energy. To evaluate the system performance, we derive an explicit expression of the outage probability for the proposed TSNCR protocol. In order to explore the system performance limit, we formulate an optimization problem to minimize the system outage probability. Since the problem is non-convex and cannot be directly solved, we design a genetic algorithm (GA)-based optimization algorithm for it. Numerical results validate our theoretical analysis and show that in such an EH two-way relay system, if NC is applied, the system outage probability can be greatly decreased. Moreover, it is shown that the relay position greatly affects the system performance of TSNCR, where relatively worse outage performance is achieved when the relay is placed in the middle of the two sources. This is the first time to observe such a phenomena in EH two-way relay systems.

DEESR: Dynamic Energy Efficient and Secure Routing Protocol for Wireless Sensor Networks in Urban Environments

  • Obaidat, Mohammad S.;Dhurandher, Sanjay K.;Gupta, Deepank;Gupta, Nidhi;Asthana, Anupriya
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.269-294
    • /
    • 2010
  • The interconnection of mobile devices in urban environments can open up a lot of vistas for collaboration and content-based services. This will require setting up of a network in an urban environment which not only provides the necessary services to the user but also ensures that the network is secure and energy efficient. In this paper, we propose a secure, energy efficient dynamic routing protocol for heterogeneous wireless sensor networks in urban environments. A decision is made by every node based on various parameters like longevity, distance, battery power which measure the node and link quality to decide the next hop in the route. This ensures that the total load is distributed evenly while conserving the energy of battery-constrained nodes. The protocol also maintains a trusted population for each node through Dynamic Trust Factor (DTF) which ensures secure communication in the environment by gradually isolating the malicious nodes. The results obtained show that the proposed protocol when compared with another energy efficient protocol (MMBCR) and a widely accepted protocol (DSR) gives far better results in terms of energy efficiency. Similarly, it also outdoes a secure protocol (QDV) when it comes to detecting malicious nodes in the network.

Communication Event-driven Power Management for Energy Efficient Wireless Sensor Network (에너지 효율적인 무선 센서 네트워크를 위한 통신 이벤트 기반의 전력 관리 방안에 관한 연구)

  • Hwang, Kwang-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7B
    • /
    • pp.411-421
    • /
    • 2007
  • It is well known that the biggest problem of wireless sensor networks is power conservation. There have been two major approaches to efficiently use energy in wireless sensor networks. One is to use a dynamic power management scheme and the other is to use energy efficient protocols. In the former, the power manager is responsible for managing the proper power state of CPU and each I/O with respect to the events, but the power manager does not concern about the internal operation of the underlying network protocols. Thus such conventional power managers can waste unpredicted power during communication period. On the other hand, the energy efficient protocols are just focused on the power saving operation of the radio PHY. In this paper, we introduce an energy-efficient power saving mechanism that can significantly reduce unwanted power consumption of wireless sensor nodes through the communication event-driven power management. We show that our scheme improves the energy conservation in the entire network through simulations.

Topology Change Algorithms based on Fluid Flow and Flock Dispersion for Energy-Harvesting Mobile Sensor Networks (에너지 수확 모바일 센서 망을 위한 유체 흐름 및 군집 분산 기반 토폴로지 변환 알고리즘)

  • So, Wonho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.98-106
    • /
    • 2013
  • The duty-cycle synchronization among mobile sensor nodes with energy-harvesting is very important. The nodes should keep their duty-cycle same to others as much as possible because they have to cooperate each other and to consume energy efficiently. The distribution of node position in network affects not only node connectivity but also the active time of synchronized nodes, and it relates to network life-time finally. In this paper, we introduce a network topology change algorithm (TCA) for energy-harvesting mobile sensor networks based on self-synchronized duty-cycling. The algorithm tries to change a network topology into a balanced topology where the mobile sensor nodes are unified according to the density of the number of nodes. For TCA, both fluid flow algorithm and flock dispersion algorithm are proposed and they are evaluated through the simulation in agent based modeling language. TCA is applied to the energy-harvesting mobile sensor networks to improve the synchronization of duty-cycle and to reduce the variation of energy consumption among nodes.

A Packet Distribution Routing for Balancing Energy-Consumption in MANET (MANET의 에너지 분산 소모를 위한 패킷 분산 라우팅)

  • Jin, Dong-Xue;Choi, Yong-Jun;Park, Hee-Joo;Kim, Chong-Gun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.2
    • /
    • pp.79-86
    • /
    • 2008
  • MANET(Mobile Ad hoc Network) is a collection of two or more nodes equipped with wireless communications and constrained by the factor of energy limitation. The running out of energy on some nodes may bring down the performance of network seriously. For solving the problems above, this paper uses completely separated Node-Disjoint multipaths from a source to a destination as many as possible. And, based on average, minimum or variance of energy values on the each multipath, the packets are distributed on paths. Generally, collecting methods for energy information can be classified into two main categories, Static and Dynamic. As the different energy values collected, the packet distribution methods are classified into six criteria, Static-Average, Static-Minimum, Static-Variance, Dynamic-Average, Dynamic-Minimum and Dynamic-Variance respectively. The performance of the packet distribution methods and that of AODV are compared by NS2 simulation.

Stochastic Optimization of Multipath TCP for Energy Minimization and Network Stability over Heterogeneous Wireless Network

  • Arain, Zulfiqar Arain;Qiu, Xuesong;Zhong, Lujie;Wang, Mu;Chen, Xingyan;Xiong, Yongping;Nahida, Kiran;Xu, Changqiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.195-215
    • /
    • 2021
  • Multipath Transport Control Protocol (MPTCP) is a transport layer protocol that enables multiple TCP connections across various paths. Due to path heterogeneity, it incurs more energy in a multipath wireless network. Recent work presents a set of approaches described in the literature to support systems for energy consumption in terms of their performance, objectives and address issues based on their design goals. The existing solutions mainly focused on the primary system model but did not discourse the overall system performance. Therefore, this paper capitalized a novel stochastically multipath scheduling scheme for data and path capacity variations. The scheduling problem formulated over MPTCP as a stochastic optimization, whose objective is to maximize the average throughput, avoid network congestion, and makes the system more stable with greater energy efficiency. To design an online algorithm that solves the formulated problem over the time slots by considering its mindrift-plus penalty form. The proposed solution was examined under extensive simulations to evaluate the anticipated stochastic optimized MPTCP (so-MPTCP) outcome and compared it with the base MPTCP and the energy-efficient MPTCP (eMPTCP) protocols. Simulation results justify the proposed algorithm's credibility by achieving remarkable improvements, higher throughput, reduced energy costs, and lower-end to end delay.

Enhancing the Quality of Service by GBSO Splay Tree Routing Framework in Wireless Sensor Network

  • Majidha Fathima K. M.;M. Suganthi;N. Santhiyakumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2188-2208
    • /
    • 2023
  • Quality of Service (QoS) is a critical feature of Wireless Sensor Networks (WSNs) with routing algorithms. Data packets are moved between cluster heads with QoS using a number of energy-efficient routing techniques. However, sustaining high scalability while increasing the life of a WSN's networks scenario remains a challenging task. Thus, this research aims to develop an energy-balancing component that ensures equal energy consumption for all network sensors while offering flexible routing without congestion, even at peak hours. This research work proposes a Gravitational Blackhole Search Optimised splay tree routing framework. Based on the splay tree topology, the routing procedure is carried out by the suggested method using three distinct steps. Initially, the proposed GBSO decides the optimal route at initiation phases by choosing the root node with optimum energy in the splay tree. In the selection stage, the steps for energy update and trust update are completed by evaluating a novel reliance function utilising the Parent Reliance (PR) and Grand Parent Reliance (GPR). Finally, in the routing phase, using the fitness measure and the minimal distance, the GBSO algorithm determines the best route for data broadcast. The model results demonstrated the efficacy of the suggested technique with 99.52% packet delivery ratio, a minimum delay of 0.19 s, and a network lifetime of 1750 rounds with 200 nodes. Also, the comparative analysis ensured that the suggested algorithm surpasses the effectiveness of the existing algorithm in all aspects and guaranteed end-to-end delivery of packets.

Instance segmentation with pyramid integrated context for aerial objects

  • Juan Wang;Liquan Guo;Minghu Wu;Guanhai Chen;Zishan Liu;Yonggang Ye;Zetao Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.701-720
    • /
    • 2023
  • Aerial objects are more challenging to segment than normal objects, which are usually smaller and have less textural detail. In the process of segmentation, target objects are easily omitted and misdetected, which is problematic. To alleviate these issues, we propose local aggregation feature pyramid networks (LAFPNs) and pyramid integrated context modules (PICMs) for aerial object segmentation. First, using an LAFPN, while strengthening the deep features, the extent to which low-level features interfere with high-level features is reduced, and numerous dense and small aerial targets are prevented from being mistakenly detected as a whole. Second, the PICM uses global information to guide local features, which enhances the network's comprehensive understanding of an entire image and reduces the missed detection of small aerial objects due to insufficient texture information. We evaluate our network with the MS COCO dataset using three categories: airplanes, birds, and kites. Compared with Mask R-CNN, our network achieves performance improvements of 1.7%, 4.9%, and 7.7% in terms of the AP metrics for the three categories. Without pretraining or any postprocessing, the segmentation performance of our network for aerial objects is superior to that of several recent methods based on classic algorithms.

How Network Coding Benefits Converge-Cast in Wireless Sensor Networks

  • Tang, Zhenzhou;Wang, Hongyu;Hu, Qian;Hai, Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1180-1197
    • /
    • 2013
  • Network coding is one of the most promising techniques to increase the reliability and reduce the energy consumption for wireless sensor networks (WSNs). However, most of the previous works mainly focus on the network coding for multicast or unicast in WSNs, in spite of the fact that the converge-cast is the most common communication style in WSNs. In this paper, we investigate, for the first time as far as we know, the feasibility of acquiring network coding benefits in converge-cast, and we present that with the ubiquitous convergent structures self-organized during converge-casting in the network, the reliability benefits can be obtained by applying linear network coding. We theoretically derive the network coding benefits obtained in a general convergent structure, and simulations are conducted to validate our theoretical analysis. The results reveal that the network coding can improve the network reliability considerably, and hence reduce number of retransmissions and improve energy-efficiency.

Application-Centric, Energy-Efficient Network Architecture ACTION, Based on Virtual Optical Slice Core and Deterministic Optical Access Network

  • Ashizawa, Kunitaka;Okamoto, Satoru;Yamanaka, Naoaki;Oki, Eiji;Fumagalli, Andrea;Veeraraghavan, Malathi
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.340-345
    • /
    • 2015
  • The Internet traffic is forecasted to grow at a compound annual rate of 21 % from 2013 to 2018, according to surveys carried out by Cisco [1]. Network resources are significantly over-provisioned in today's networks, and it is quite common to see link utilization in the 30-40% range [2]. Additionally, the multi-media services have widely divergent bandwidth and Quality of Experience (QoE) requirements. Unfortunately, the huge transmission capacity will increase the power consumption of network equipment [3]. Applications Coordinated with Transport, Internet Protocol and Optical Networks (ACTION) [4] has been proposed to realize a multi-QoE, application-centric, and highly energy-efficient network that leverages flexible elastic optical network technologies [5-7]. This paper provides key network technologies for realizing the ACTION, which are a virtual optical slice core network and a Time Division Multiplexing (TDM)-based deterministic active optical access network.