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Abstract 

 
Aerial objects are more challenging to segment than normal objects, which are usually smaller 
and have less textural detail. In the process of segmentation, target objects are easily omitted 
and misdetected, which is problematic. To alleviate these issues, we propose local aggregation 
feature pyramid networks (LAFPNs) and pyramid integrated context modules (PICMs) for 
aerial object segmentation. First, using an LAFPN, while strengthening the deep features, the 
extent to which low-level features interfere with high-level features is reduced, and numerous 
dense and small aerial targets are prevented from being mistakenly detected as a whole. Second, 
the PICM uses global information to guide local features, which enhances the network's 
comprehensive understanding of an entire image and reduces the missed detection of small 
aerial objects due to insufficient texture information. We evaluate our network with the MS 
COCO dataset using three categories: airplanes, birds, and kites. Compared with Mask R-CNN, 
our network achieves performance improvements of 1.7%, 4.9%, and 7.7% in terms of the AP 
metrics for the three categories. Without pretraining or any postprocessing, the segmentation 
performance of our network for aerial objects is superior to that of several recent methods 
based on classic algorithms. 

 
 

Keywords: Aerial object segmentation, Pyramid integrated context, Local aggregation 
feature pyramid networks, Context information, Feature enhancement. 
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1. Introduction 

Instance segmentation is a challenging and crucial task in computer vision that seeks to 
simultaneously handle both object detection problems and semantic segmentation problems. 
Instance segmentation involves not only predicting and distinguishing between the location 
and semantic classes of each object in an image but also distinguishing between different 
instances within the same class. Instance segmentation technology can be commonly 
employed in autopilot systems, robot control, assisted medical image segmentation and remote 
sensing imaging. 

Instance segmentation methods are currently divided into two categories: two-stage 
methods and one-stage methods. Recent best-performing instance segmentation methods are 
usually two-stage methods. Among them, the classic two-stage instance segmentation 
algorithm Mask R-CNN [1] uses the RoIAlign method of bilinear interpolation by Faster R-
CNN [2] to fix the RoI. The region proposal box can still be aligned with the instance in the 
process of feature map reduction, and a fully convolutional network (FCN) [3] mask branch is 
added at the end of the process to predict the category of each pixel, which could perform both 
target detection and segmentation tasks in parallel, but heavily relies on the target detection 
results. From Mask R-CNN, Liu et al. proposed PANet [4], which enhances the feature 
pyramid with precise location information existing in low-level features, creates an enhanced 
bottom-up path, shortens the information path, and avoids arbitrary assignment of feature 
levels through adaptive feature pooling. Huang et al. presented Mask Scoring R-CNN [5], 
which solves the problem of high classification confidence by adding the MaskIoU head to 
score the generated mask, instead of only using the classification score as a measure of model 
quality. However, the mask quality is not good enough. He et al. proposed PointRend [6], 
which regards instance segmentation as a rendering problem in image processing. By 
continuously upsampling and increasing the number of pixels, the points for predicting 
segmentation labels are adaptively selected in the image plane. The points are classified and 
predicted to increase the details of the boundary, clarifying the segmentation method and 
achieving high-quality segmentation, but the process is more complicated for the segmentation 
results. Cheng et al. proposed BMask R-CNN [7], in which the native mask branch is replaced 
with the boundary-preserving mask branch and boundary information [8] is introduced to 
improve the localization accuracy of the network. Recently, Cheng et al. proposed 
Mask2Former [9-10] and a new unified segmentation method. Mask2Former differs from 
other methods in the way that it generates binary masks. These binary masks are represented 
by a set of feature vectors to represent the object query [11-13] so that the transformer decoder 
can be used to train through a fixed set of queries. 

Two-stage instance segmentation algorithms [14-15] usually need to generate proposal 
regions first and then perform bounding regression and mask segmentation on the proposed 
regions. Since the RPN increases the inference time, the one-stage instance segmentation 
algorithm is more dominant in terms of inference speed. To eliminate the limitation of the 
proposal box and obtain a higher inference speed, a series of one-stage instance segmentation 
algorithms [16-17] are derived from the one-stage object detection algorithm FCOS [18]. Bolia 
et al. proposed YOLACT++ [19-20], which simultaneously generates prototype masks and 
mask coefficients. The prototype mask was fused with mask coefficients to generate masks 
for each target. Its inference speed reaches an astonishing 33.5 FPS, but its segmentation 
accuracy is only 29.8% , which could achieve real-time instance segmentation but with much 
lower accuracy than the two-stage instance segmentation algorithm. Tian et al. proposed 
CondInst [21], in which a dynamic instance-aware network conditioned on an instance is 
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adopted without using the ROI of the instance as inputs, so cropping and feature alignment of 
the ROI are unnecessary. Since the capacity of dynamically generated conditional 
convolutions is greatly increased, the speed of inference can be substantially improved, and 
high-speed and high-precision segmentation is achieved, but large-size objects lack 
segmentation details. Chen et al. proposed BlendMask [22], which mixes top-down and 
bottom-up segmentation methods and is able to fuse low-level features containing location 
information and instance-level global information. Tian et al. proposed BoxInst [23] and 
projection and pairwise affinity mask loss, which changed the instance segmentation algorithm 
to a semisupervised algorithm using only box annotations. Tian et al. proposed SOLOv2 [24-
25], which converts the segmentation problem to a position classification problem so that 
anchors and bounding boxes are not needed. However, the category is assigned to the pixels 
of each instance according to the position and size of the instance, so the training time of this 
network is longer compared to other networks. Although one-stage instance segmentation 
algorithms have achieved excellent performance in terms of speed, they are still less accurate 
than the current two-stage instance segmentation network. 

 

Mask R-CNN Ours
Number of detections: 43 Number of detections: 85

  
Fig. 1. Left: Instance segmentation results of Mask R-CNN for small and dense objects. Right: 

Context module added to introduce the global information so that the foreground and background 
could be better distinguished. 

 
Although the strong Mask R-CNN [1] and its series of related variants [4-7] have provided 

powerful localization and higher-quality mask capabilities, the size of the convolution kernel 
determines the weighting range of the weights, leaving insufficient receptive field to segment 
aerial objects with small targets and less texture. Meanwhile, the two-stage instance 
segmentation algorithm relies heavily on accurate target detection to some extent, and the 
obtained instance masks have relatively low resolution, which makes it difficult to provide 
accurate candidate regions when segmenting small-sized and poorly textured objects. Since 
convolution usually has only a limited perceptual field, it is particularly important to introduce 
global contextual information to compensate for the lack of texture information and to enhance 
feature representation for small objects. Although the single-stage instance segmentation 
algorithm is free from the limitation of detection frame, it still needs to combine the whole 
picture to segment the scene when facing small-sized objects. During feature extraction, the 
image traverses a shallower convolutional layer, and its detail information is abundant. 
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However, the receptive field is too small, and the context information is insufficient. After the 
image traverses a deeper convolutional layer, its semantic information is rich, and the receptive 
field is larger. However, the detailed information is lost. Simultaneously, different categories, 
such as kites and flags, have similar characteristics. Accurately distinguishing between 
different instances requires a larger receptive field and contextual information between two 
different convolutional layers. As shown in Fig. 1, Mask R-CNN only detects a small number 
of instances around an object when predicting dense and small object instances. Due to the 
lack of a comprehensive understanding of the whole scene, it is easily filtered out by the 
convolution kernel as noise by only local convolution. Due to the pooling operation of ROI 
Align [1], the size of the feature map decreases, causing the loss of more instances. Compared 
with Mask R-CNN, our approach captures more small object instances, and the mask 
confidence is improved. 

To enlarge the receptive field of local convolution features, a series of recent works [26-
31] propose different methods to introduce contextual information. After summarizing and 
drawing on the above method of introducing global information, we propose the pyramid 
integrated context module (PICM) for instance segmentation, which effectively uses 
multiscale global information to guide local features at different scales. Overall, our main 
contributions are presented as follows: 

·We propose the pyramid integrated context module (PICM) to guide local features by 
using global information, which enhances the network's comprehensive understanding of an 
entire image. The PICM compensates for the insufficient texture information of aerial objects 
and texture similarity between two different categories. 

·We propose the local aggregation feature pyramid network (LAFPN). Through the local 
aggregation of features of adjacent scales, the expression ability of features at different scales 
is strengthened, and the interference effect of small object features on high-level features is 
reduced. 

·Compared with the classic instance segmentation network in recent years, our method 
achieves a great improvement in the segmentation performance of small and dense aerial 
objects, which can effectively alleviate the segmentation difficulty of capturing instances that 
are too small. Compared with Mask R-CNN, our method achieves performance improvements 
of 1.7%, 4.9%, and 7.7% in terms of the AP metrics for airplanes, birds, and kites, respectively, 
on the MS COCO dataset. 

2. Related work 

2.1. Feature Pyramid Network 
To effectively identify objects of different sizes, they are usually placed on feature maps of 
different scales for prediction. Feature Pyramid Network [32] can fuse feature maps of 
different scales to enhance their ability to represent features. Liu et al. proposed a simple 
bidirectional fusion PANet [4], adding another bottom-up feature fusion structure based on 
FPNs and decreasing the number of layers passed between low-level features and high-level 
features. Liu et al. proposed ASFF [33], which added an attention module when merging the 
features of different stages and can effectively control the contribution of the features of 
different stages to each other during fusion, and uses differential fusion, which allows the 
weights to be easily learned in back propagation. Ghiasi et al. proposed NAS-FPN [34] to 
search for the optimal model architecture by using a neural architecture search. The modular 
search space makes the search pyramid architecture manageable, but the search process 
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requires a huge amount of computation to find the optimal architecture. Tan et al. proposed 
BiFPN [35] for fast and efficient fusion of features of different scales through a hybrid scaling 
method, using learnable weights to assign the contribution of different features to the fusion 
result through additional feature weighting module. Qiao et al. proposed Recursive-FPN [36], 
which inputs feature maps after feature fusion into the backbone network for secondary 
circulation. The abovementioned FPN feature fusion method has numerous parameters and a 
complex structure, and feature fusion between different scales is prone to information loss and 
aliasing effects. Also when features are used in the detection process, deep features are used 
to detect large targets and shallow features are used to detect small targets. Large targets from 
deep features often require spatial information from shallow features, but these above FPN 
networks do not take into account the effect of small target features from shallow features on 
deep features when fusing features. The deep features incorporate both spatial information 
from the shallow features and unwanted small target features that have been filtered out, thus 
impacting on the segmentation of the large targets. To mitigate this problem and inspired by 
the above FPN idea, we propose a simple and efficient LAFPN for the characteristics of aerial 
objects. 

2.2 Contextual Information Extraction 
Each pixel of an image is not isolated, and there is a close connection between each pixel. 
When performing semantic segmentation or instance segmentation, local information and 
global context information should be fully considered to better process image features. Chen 
et al. proposed the Deeplab [27] series of semantic segmentation algorithms. The Atros spatial 
pyramid pooling (ASPP) module was introduced. Parallel sampling of feature maps with 
dilated convolutions at different sampling rates was conducted to expand the receptive field. 
Zhao et al. proposed PSPNet [28], which added a pyramid pooling module to the structure to 
fuse features at different levels for the fusion of semantics and details, and finally, the prior 
information from the pyramid pooling module and the original feature map are summed and 
fed to the final convolution module to complete the prediction. Fu et al. proposed DANet [29] 
to learn the spatial and channel interdependencies of features through a dual-attention network 
to add rich contextual information to local features. The location attention module selectively 
aggregates the features at each location by a weighted sum of the features at all locations. The 
channel attention module selectively emphasizes channel mappings where interdependencies 
exist by integrating the relevant features between all channel mappings. Yuan et al. proposed 
OCNet [30] to calculate the similarity between a single pixel and all pixels to obtain the target 
semantics and the mapping of each pixel. Compared with those of ASPP, which does not 
differentiate whether there is a relationship between a single pixel and the target semantics, 
the segmentation results are more accurate. He et al. proposed APCNet [31]. After fusing the 
three ideal features, the adaptiveness of the context vector, multiscale nature, and global-
guided local affinity, an adaptive context module is proposed, which utilizes local and global 
representations to estimate the similarity of local region weights. Since the perceptual field of 
convolutional neural networks is much smaller than the theoretical size, especially in deeper 
networks, this leaves many networks without adequate incorporation of important global scene 
information. Also in the segmentation of complex scenes, objects at different scales need to 
be segmented on feature maps of different depths in the backbone network, but the above 
methods of introducing contextual information all expand the perceptual field on the same 
feature map, dividing a feature map into different scales to obtain global dependencies. To 
better extract contextual information for complex scenes, we use feature maps of different 
scales to compute global information vectors to guide local convolutional features to generate 
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affinity matrices. The affinity matrix with the region representation is multiplied to generate 
local convolutional features with global information. 

3. Method  
Compared with normal objects, aerial objects are smaller and have darker surfaces as they are 
far from the observation point, and most of the observation angles are upward angles. It is 
therefore difficult to perform segmentation based only on local features. For small and dense 
aerial objects, such as flocks of birds and kites, general feature extraction networks tend to 
aggregate features into a group when extracting them, thus misjudging the flock as birds. To 
alleviate these two problems, we propose two modules, the LAFPN and PICM, which 
strengthen high-level features and introduce contextual information. 
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Fig. 2. PIC pipeline.  

 
The main framework of the PIC network for the instance segmentation task is shown in 

Fig. 2. PIC uses ResNet as the backbone network to extract features Cn. To better integrate 
features of different scales, we design the LAFPN to output Xn, which retains more detailed 
information of features at different scales and has a simple structure with fewer parameters. 
The network can effectively adapt to the characteristic requirements of aerial objects. The 
global information gn(X) of different scale features is calculated by global average pooling of 
Xn, and the context vector is constructed by sending Xn and gn(X) to the context module. The 
context vector is concatenated with Xn. We designed the pyramid aggregation context module 
to introduce global information and to improve the network's comprehensive understanding of 
an entire scene by using global information at different scales to correct local features, thereby 
improving the ability to capture small objects. 

3.1 LAFPN 
In the process of using the backbone network to extract features, the receptive field of the low-
level network is smaller, and more fine-grained features, which have more spatial information, 
can be utilized. As the number of convolutional layers increases, the receptive field increases, 
and the high-level network has more semantic information. Therefore, the low-level network 
is generally used to segment small objects, and the high-level network is used to segment 
medium and large objects. Aerial objects are generally small and clustered in large numbers. 
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When using the general feature extraction network to extract features, although the high-level 
network has richer semantic information, it lacks spatial information, and it is easy to misjudge 
the clustered aerial objects as a single object. 
 

Mask R-CNN OursPartial enlargement  
Fig. 3. Segmentation results for kite groups. 

 
As shown in the segmentation results in Fig. 3, Mask R-CNN incorrectly segmented the 

kite group into one kite as the kites are small and numerous, taking up most of the entire image. 
In the process of feature extraction, there is not enough spatial information, and only the 
category of the object, not its position, can be judged. Therefore, we add a bottom-up feature 
fusion route to the LAFPN, as shown in Fig. 2, to strengthen the features of the high-level 
network. Compared with that of normal objects, the segmentation of aerial objects is more 
complicated. As shown in Fig. 4, due to the large size of normal objects, their features exist in 
both the high-level network and the low-level network. Bottom-up feature fusion can 
effectively strengthen the features of high-level networks. Aerial objects are often small and 
dense, and their features tend to disappear or cluster after being extracted to the high-level 
network, while small objects only need to be segmented in the low-level network. There are 
both large objects and small objects in complex scenes. The high-level network has only the 
features of large objects, whereas the low-level network has the features of both large objects 
and small objects. Since the high-level network is only used to segment large objects, if the 
features of C2 are fused with the features of C5, the filtered small object features will be added 
to the high-level features, thus affecting the segmentation of large objects. Therefore, in the 
bottom-up feature fusion route, only local feature aggregation is performed on adjacent feature 
layers. 

For a better comparison with other networks, we use ResNet as our backbone network. We 
do not use the C1 feature map; although its resolution is high enough and it has rich location 
information, it consumes too much memory. We adopt {P2, P3, P4, P5} to represent the feature 
level generated by the FPN. P2 is directly input to the next layer. LAFPN conveys the semantic 
information of large objects from high-level features to low-level features through a top-down 
feature fusion path, which can alleviate low-level features from incorrectly segmenting 
prominent parts of large objects into small objects. It also conveys spatial information of large 
and small objects from neighbouring scales of low-level features to high-level features, 
helping high-level features to better locate the position of large objects without incorporating 
too many features of small objects into high-level features, avoiding the segmentation of small 
objects gathered into clusters into one large object. Other feature fusion networks [4] [33-36], 
on the other hand, all fuse high-level features and low-level features with each other, so that 
the small object features of the low-level features are also fused into the high-level features, 
while the high-level features do not need the small object features, which are noisy for the 
high-level features to segment the large objects. As shown in Fig. 5, a new feature map Ni+1 is 
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generated by fusing the high resolution feature map Pi with the rough map Pi+1. Each feature 
map Pi is first bilinearly interpolated to reduce the size of the feature map and then Ni+1 is 
generated by adding Pi+1 to each of the element values in Pi via a lateral join. In the case of 
fusion of adjacent features, downsampling methods using bilinear interpolation could retain 
more spatial information about the upper layer of features compared to 3 × 3 convolution and 
maxpooling. The newly generated feature maps {N3, N4, N5} are convolved with a 3 × 3 
convolution kernel to reduce the aliasing effect after feature map fusion. 

 

C2
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C4

C5

Aerial objectNormol object Complex scene

 
Fig. 4. Comparison of feature maps at different levels in different scenarios for the ResNet101 

backbone network. 
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Fig. 5. Illustration of the fusion of different scale features in the local aggregation feature pyramid 

network. 
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3.2 PICM 
Compared with ordinary objects, aerial objects have smaller sizes, darker surfaces and a lack 
of texture details owing to the influence of observation distance and observation angle. The 
bird shown in Fig. 1 has almost all black surfaces, and its category cannot be judged only from 
partial observation. Additionally, kites and flags have the same texture. Contextual 
information is critical for complex scene parsing and instance segmentation. Objects of 
different scales need to construct context vectors from features of different scales to capture 
the long-term dependencies of local features and global information. We propose a pyramid 
aggregation context module to handle objects of different scales and to construct different 
scales of contextual information. 

The instance segmentation task can be simplified to predict instance bounding boxes and 
pixelwise semantic labels. For this task, the mask can be predicted using only local features of 
different scales. However, using only local features for prediction disregards the surrounding 
features of the instance, and some small objects may be missed, which limits the instance 
segmentation performance of the network. To introduce contextual information and to improve 
the performance of network segmentation, some previous networks [27-31] applied different 
methods to introduce global information and achieved good results. The formula for contextual 
representation can generally be defined as 

 
1( ( ))

i

j
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i
i jT

z xρ δ
∈
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X and Z are input features and context features, respectively. There are n pixels in T. Ti is 
a subset of the T pixel set. xj is the j-th element of X. zi is the i-th element of Z. xj is the 
contextual pixel associated with zi. The above formula means that xj describes zi through 
transformation functions δ(·) and ρ(·). For ease of description, the above mathematical 
formulation is based on the one-dimensional case to describe the relationship between 
contextual pixels and contextual features and can be easily generalized to other dimensions. 
In this paper, we construct the Zn function to calculate the context vectors of different scales, 
and the input variables are the feature maps Xn of different scales and the global information 
gn(X) of different scales.  
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Fig. 6. Context Module.  
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The pyramid aggregation context module is the core module in the PIC network for 
introducing contextual information. The module consists of two branches: the first branch 
computes the affinity coefficient αn guided by the global information, and the second branch 
computes the single-scale representation of the convolutional local features. The two matrices 
that are output are multiplied by the two branches to obtain the context vector. The precise 
details are described in detail below. The formula for calculating Zn is expressed as follows: 
 ( , ( ))n n n nx g XZ f γ=  (2) 

xn is the feature representation resulting from the convolution of Xn. gn(X) is the global 
information at different scales. gn(X) and xn compute the affinity matrix via function f. γn is 
the regional representation of the feature map. We utilize local feature Xn and its associated 
context vector Zn to segment objects of different scales.  

As shown in Fig. 6, the extracted feature maps of size H×W×C are input into two branches, 
where H, W, and C represent the width, height, and number of channels, respectively. In the 
first branch, we perform 1×1 convolution processing on the local features Xn output by {P2, 
N3, N4, N5} of different scales and convert them from original feature maps of size H×W×C 
to feature maps of size H×W×C/4 through a convolution operation, resulting in simplified 
feature maps x1, x2, x3, and x4. Next, gn(X) is obtained by performing a 1×1 convolution 
transformation and spatial global average pooling on X1, X2, and X3. The method is shown in 
Fig. 7. The feature map size of X1 is 256×256×256. After 1×1 convolution transformation and 
the spatial global average pooling method, as shown in the figure, g1(X) of size 1×1×64 and 
g4(X) of size 1×1×512 are obtained. X2 of size 128×128×512 is transformed to obtain g2(X) of 
size 1×1×128. X3 of size 64×64×1024 is transformed to obtain g3(X) of size 1×1×256. After 
obtaining the global information representation vector gn(X) of different scales, we multiply 
local feature xn and global vector gn(X) and calculate the global guided affinity coefficient αn 
through a 1×1 convolution; it is subsequently reshaped into an affinity matrix of size HW × 1. 

 

H×W×C 1×1 H×W×32*2n

CO
N

V

1×1×32*2n
X

gn(X)
Global Average Pooling

 
Fig. 7. Illustration of the global information gn(X) calculation for feature maps at different scales. 

 
The second branch transforms X into 1×1×C/4 using spatial global average pooling and a 

1×1 convolutional transformation and then reshapes γn to a size of 12×C/4 to match the affinity 
matrix. Next, the affinity matrix and γn are multiplied to obtain the context information and 
are reshaped to obtain context matrix Zn. x is added to Zn by using a residual connection to 
simplify the training process. Zn is concatenated with Xn to introduce contextual information 
into the local convolutional features. After obtaining feature maps of different scales, we use 
the RPN to select regions of interest and use RoIAlign to fix the selected regions of interest to 
feature maps of the same size using bilinear interpolation. 

4. Experiment 

4.1 Datasets and evaluation metrics 
We pick three categories for experiments on the MSCOCO 2017 instance segmentation dataset 
[37], which includes images of airplanes, kites, and birds. The training dataset contains 8401 
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images, and the validation dataset contains 312 images. Unless otherwise specified, the 
average precision values are evaluated using masked IoU. The evaluation metrics are average 
precision (AP), average precision with an IoU of 0.5 (AP50), average precision with an IoU of 
0.75 (AP75), APS (AP for small objects: area<322), APM (AP for medium objects: 
322<area<962), and APL (AP for large objects: area>962) for objects of different sizes. 

4.2 Implementation details 
The pretrained weights of the backbone network that we used are publicly available. Unless 
otherwise stated, we use the following implementation details: Our experimental framework 
is based on the deep learning framework TensorFlow; its version is 2.4, and the CUDA version 
is 11.4. The comparison experiment is implemented on the detectron2 platform, and its version 
is 0.6. All experiments are performed on a server with an Nvidia GTX 3060 graphics card. 
When we reproduce other models, the hyperparameters in the original network are unchanged 
or slightly adjusted. We employ ImageNet pretrained with ResNet-101 [38] as our backbone 
network. The network is trained for 90 K iterations using the stochastic gradient descent (SGD) 
method with a batch size of 1 and an initial learning rate of 0.001. At 60 K and 80 K iterations, 
the learning rate is reduced by a factor of 10. The weight decay and momentum are set to 
0.00001 and 0.9, respectively. For ablation studies, all networks are trained on the 1× schedule 
of Mask R-CNN [1]. 
 
Table 1. Detailed quantitative results of AP at different IoUs for the three categories in the MS COCO 

dataset. 

Method Schedule AP AP50 AP75 
airplane bird kite airplane bird kite airplane bird kite 

Mask R-CNN 1× 59.3 30.1 34.5 82.7 49.7 56.6 67.1 32.0 38.5 
CondInst 3× 53.3 30.1 30.6 85.8 56.3 59.7 55.0 27.5 28.9 

BlendMask 3× 54.1 32.0 32.8 83.6 55.7 61.7 63.9 30.6 29.1 
SOLOv2 3× 55.2 29.1 30.9 83.0 51.1 57.8 65.1 28.3 29.7 
BoxInst 3× 44.2 23.8 23.8 82.1 48.7 54.2 40.0 20.4 17.5 

Point Rend 3× 54.7 32.5 32.1 82.8 57.2 59.9 65.4 30.8 30.1 
BMask 1× 52.3 31.1 31.4 82.8 54.9 60.1 63.6 31.1 27.1 

Mask2Former 1× 59.0 33.4 35.8 89.2 56.7 63.8 72.9 34.3 36.4 
Proposed 1× 61.0 35.0 42.2 80.8 58.3 66.0 67.5 35.8 46.7 

 

4.3 Experimental results and analysis 
We perform a comparison with the state-of-the-art algorithms for instance segmentation, as 
shown in Table 1, using the same backbone network ResNet-101-FPN. R101 is used below to 
replace ResNet-101. When reproducing other networks, their source code parameters are set 
using the original parameters. The algorithms applied for comparison all use three categories, 
airplanes, kites and birds, from the COCO dataset and use the same evaluation metrics. As 
shown in Table 1 and Table 2, we conduct a detailed comparison of the APs at different IoUs 
and scales for three aerial categories, airplane, bird, and kite. Generally, our algorithm exhibits 
a higher AP than the above algorithms, uses a 1× schedule for training, and has a shorter 
training time. Compared with the original network, Mask R-CNN, the AP increases by 1.7%, 
4.9%, and 7.7% for the categories of airplane, bird, and kite categories, respectively. The APS 
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is improved by 6.9%, 4.4%, and 8.2%. These two indicators are also the highest among those 
of the above algorithms. According to the experimental results and a comparison of different 
scale APs for different algorithms, the segmentation performance of different algorithms on 
objects of different categories and scales are unbalanced, and our proposed network 
segmentation ability for aerial objects is stronger than that of other algorithms. 

 
Table 2. Detailed quantitative AP results at different scales for the three categories in the MS COCO 

dataset. 

Method Schedule APS APM APL 
airplane bird kite airplane bird kite airplane bird kite 

Mask R-CNN 1× 50.5 20.0 34.9 55.0 46.5 39.5 67.2 68.3 32.5 
CondInst 3× 38.5 16.4 26.1 48.8 53.4 40.9 66.2 72.4 51.9 

BlendMask 3× 42.4 18.7 28.4 48.8 54.2 40.8 64.1 72.3 56.4 
SOLOv2 3× 39.3 15.6 25.1 50.8 51.5 43.2 65.2 70.8 52.9 
BoxInst 3× 26.3 10.8 19.2 42.9 44.6 35.5 56.3 68.3 37.3 

Point Rend 3× 44.9 19.1 29.8 50.3 51.6 36.9 63.2 73.7 46.6 
BMask 1× 41.4 17.8 29.6 49.2 48.1 36.2 60.0 72.9 42.8 

Mask2Former 1× 49.5 19.7 30.5 56.3 58.3 48.5 70.8 73.9 57.9 
Proposed 1× 57.4 24.4 43.1 56.5 53.0 48.7 66.0 74.1 43.1 

 

Mask R-CNN BlendMask

OursSOLOv2 BoxInst

Mask2Former

Number of detections: 47Number of detections: 3Number of detections: 23

Number of detections: 3Number of detections: 32Number of detections: 22

 
Fig. 8. Visual comparison of different networks for the segmentation of aerial objects. 
 
As shown in Fig. 8, we compare the visualization results of some of the above algorithms. 

The one-stage instance segmentation algorithms BlendMask and BoxInst, which do not use 
the RPN to pregenerate proposal regions, have difficulty in capturing small objects. In the 
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visualization results, only a few large objects are detected, and their confidence scores are low. 
The bottom-up segmentation network SOLOv2, which first performs semantic segmentation 
at the pixel level and then classifies the pixels of each instance according to the location and 
size of the instance, can detect some small objects but still leaves a large number of small 
objects undetected. The grand unified segmentation architecture Mask2Former is surprisingly 
effective at the instance segmentation task, but the segmentation effect on small targets is still 
not good enough. Although Mask2Former and SOLOv2 can detect a certain number of 
instances, there are still many omissions when the object is small, and they do not perform 
bounding box detection on the instances. Our proposed algorithm detects the most instances, 
and the confidence score is improved compared with that of the original network. 

4.4 Ablation 
We performed multiple ablation experiments to analyse the PIC network, which are discussed 
in detail below. To demonstrate the effectiveness of the proposed module, the performance 
improvement of the LAFPN and PICM for network segmentation of aerial objects is gradually 
verified by modifying the backbone of the network model. The experimental results are shown 
in Table 3. After adding the proposed module, the network performance is improved. 
 

Table 3. Comparison of network performances with the addition and absence of the proposed 
modules. 

Backbone AP APS APM APL 
R101+FPN 41.3 35.1 47.0 56 

R101+ FPN+PICM 45.5 40.2 52.4 61.0 
R101+LAFPN+ PICM 46.1 41.7 52.7 61.1 

 
Global guided method. We compare several different ways in which global information 

guides local features in the PICM module. The different structures are shown in Fig. 9. Self-
guided: Each scale feature map {X1, X2, X3, X4} generates its own global information vector 
gn(X) to guide its own local features. Low-level guided: Only  the low-level feature map X1 is 
used to generate the global information vector gn(X) to guide the local features of each scale. 
Mixed-guided: X1 generates global information vectors g1(X) and g4(X) to guide X1 and X4, 
and X2 and X3 use self-guided vectors to guide their respective local features. The experimental 
results are shown in Table 4. After adding the self-guided context module, the AP increases 
by 2.7%, APS increases by 2.1%, APM increases by 1.5%, and APL increases by 3.2%. 
Afterwards, we changed the global guided method to a low-level guided method. Compared 
with those of the self-guided method, the APM decreased by 0.9%, and the APL increased by 
2.4%. Although the low-level feature P2 has richer contextual information, it also adds more 
noise, resulting in the degradation of segmentation performance on mesoscale objects. Since 
medium-sized instances are mostly segmented on X2 and X3, we cancel the guided method by 
X2 and X3 of the pair of g2(X) and g3(X) generated by X1. Using the mixed guided method, APL 
is improved by 3.5% compared with that of the self-guided method. 
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Fig. 9. Comparison of different multiscale global contextual information guidance methods. 

 
Table 4. Different guidance methods for global information. 

Backbone AP APS APM APL 
R101+LAFPN 42.6 38.7 50.7 54.4 

R101+LAFPN+ self guided 45.3 40.8 52.2 57.6 
R101+LAFPN + low-level guided 45.4 40.9 51.3 60.0 

R101+LAFPN + mixed guided 46.1 41.7 52.7 61.1 
 
LAFPN. We compared several different FPN structures. The FPN reduces the semantic 

gap between different scale features by fusing the multiscale features. Our LAFPN does not 
employ a bottom-up feature fusion approach. As shown in Fig. 10, after N3 is directly 
connected to P3, it is only added to the resized result of the previous layer P2. Max pooling 
can effectively filter noise, but it easily misses details. More detailed features at different scales 
can be preserved by resizing. Through a nonsimple bottom-up feature fusion method, the loss 
of high-level semantic information caused by feature aliasing at different scales can also be 
avoided. The experimental results are shown in Fig. 11 and Table 5. In the comparison of 
visualization results in complex scenarios, PANet uses bottom-up feature fusion to fuse small 
objects features from the low-level features into the high-level features. To segment large 
object with high-level features, the small object features distract the segmentation of large 
object, resulting in the network not being able to segment large objects effectively. In PANet*, 
the 3×3 convolution downsampling method with stride 2 in the PANet feature fusion module 
is changed to 3×3 Maxpooling with stride 2. This change filters out noise in the low-level 
features and improves the network's ability to segment large targets but misses some small 
targets that could have been segmented. In LAFPN* and the LAFPN, the fusion of features by 
local aggregation reduces the overfusion of features at different scales, allowing both large 
and small targets to be segmented effectively, and the LAFPN uses Resize instead of 
Maxpooling in LAFPN* to retain more information and make the object segmentation profile 
more detailed. The quantitative results are compared. After adding PANet* and LAFPN*, the 
network performance did not improve. However, while using our LAFPN structure, the AP 
metric of the network increased by 0.6%. 
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Fig. 10. Comparison of different FPN structures. 

 

 
Fig. 11. Comparison of the visualization results of different FPNs in complex scenarios. 

 
Table 5. Feature fusion ability of different FPN structures. 

FPN AP APS APM APL 
R101 + PICM+FPN 45.5 40.2 52.4 61.0 

R101 + PICM + PANet 45.6 40.9 51.6 60.4 
R101 + PICM + PANet* 45.0 40.0 52.6 60.1 
R101 + PICM + LAFPN* 44.2 40.2 51.5 56.6 
R101 + PICM + LAFPN 46.1 41.7 52.7 61.1 

 
Important parameter settings. We compared different settings for the number of 

channels in the context module and the number of layers for local aggregation in the LAFPN. 
The experimental results are shown in Table 6 and Table 7. N5 has 2048 channels and P2 has 
256 channels. g4(X) is generated by the P2 convolution. When the number of channels in the 
context module is set to C, the number of channels needs to be expanded from 256 to 2048. 
Increasing the number of channels too fast would cause a loss of information. Setting the 
number of channels to C/4 not only reduces the number of parameters but also has been shown 
to work better in evaluation metrics. When the number of aggregation layers is set to 3, the 
effect of low-level features on high-level features remains, and the experimental results show 
no improvement in segmentation ability. Changing the number of aggregation layers to 2 
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strengthens the features at different scales and reduces the extent to which small object features 
interfere with high-level features. 

 
Table 6. Different settings for the number of channels in the context module. 
Number of channels AP APS APM APL 

C 44.2 40.1 51.0 57.2 
C/4 46.1 41.7 52.7 61.1 

 
Table 7. Comparison of layers for local aggregation of different scales in the LAFPN. 
Number of aggregation layers AP APS APM APL 

3 45.6 41.0 52.0 59.9 
2 46.1 41.7 52.7 61.1 

5. Conclusion 
In this work, we propose an instance segmentation framework to alleviate the problem of small 
and dense aerial objects with unclear textures. This framework can effectively improve the 
number of detected instances and the quality of segmentation masks for small aerial objects in 
instance segmentation. Due to the limited receptive field of local convolutional features and 
the lack of a comprehensive understanding of the entire scene, it is difficult for segmentation 
networks to capture small objects. To alleviate this problem, PIC enhances the expressive 
power of local features by adding global information to guide local features. Features at 
different scales are enhanced by a feature fusion method that is more suitable for aerial objects. 
With the same experimental setting, PIC outperforms several recent advanced instance 
segmentation algorithms for aerial object segmentation. However, the segmentation ability for 
large-scale aerial objects is limited, because for the segmentation of large scale objects, 
whether they are detected or not is not the difficulty, what is needed for large scale objects is 
to enhance their edge segmentation details, so further research is needed to improve the 
segmentation performance of PIC for each scale of aerial objects. 
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