• Title/Summary/Keyword: Network energy

Search Result 3,748, Processing Time 0.037 seconds

ENC-MAC: Energy-efficient Non-overlapping Channel MAC for Cognitive Radio enabled Sensor Networks

  • Kim, Bosung;Kim, Kwangsoo;Roh, Byeong-hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4367-4386
    • /
    • 2015
  • The concept of Internet of Things (IoT) has shed new light on WSN technologies. MAC protocol issues improving the network performance are important in WSNs because of the increase in demand for various applications to secure spectrum resources. Cognitive radio (CR) technology is regarded as a solution to the problems in this future wireless network. In recent years, energy efficiency has become an issue in CR networks. However, few relevant studies have been conducted. In this paper, an energy-efficient non-overlapping channel MAC (ENC-MAC) for CR-enabled sensor networks (CRSNs) is proposed. Applying the dedicated control channel approach, ENC-MAC allows the SUs to utilize channels in a non-overlapping manner, and thus spectrum efficiency is improved. Moreover, the cooperative spectrum sensing that allows an SU to use only two minislots in the sensing phase is addressed to en-hance energy efficiency. In addition, an analytical model for evaluating the performance, such as saturation throughput, average packet delay, and network lifetime, is developed. It is shown in our results that ENC-MAC remarkably outperforms existing MAC protocols.

Design and Verification of Advanced Distribution Management System using Information and Communication Convergence Technology (ICT융복합 기술을 이용한 차세대 배전계통 운영 시스템 설계 및 검증)

  • Kim, Dongwook;Park, Youngbae;Chu, Cheolmin;Jo, Sungho;Seo, Inyong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.19-29
    • /
    • 2019
  • Recently, with the rise of environmental issues and the change of government policy (Renewable Energy 3020 Implementation Plan), a large amount of renewable energy such as solar and wind power is connected to the power system, and most of the renewable energy is concentrated in the power distribution network. This causes many problems with the voltage management and the protection coordination of the grid due to the its intermittent power generation. In order to effectively operate the distribution network, it is necessary to deploy more intelligent terminal devices in the field to measure the status of the distribution network and develop various operation functions such as visualization and big data analysis to support the power distribution system operators. In addition, the failover technology must be supported for the non-stop operation of the power distribution system. This paper proposes the system architecture of new power distribution management system to cope with high penetration of renewable energy. To verify the proposed system architecture, the functional unit test and performance measurement were performed.

CACHE:Context-aware Clustering Hierarchy and Energy efficient for MANET (CACHE:상황인식 기반의 계층적 클러스터링 알고리즘에 관한 연구)

  • Mun, Chang-min;Lee, Kang-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.571-573
    • /
    • 2009
  • Mobile Ad-hoc Network(MANET) needs efficient node management because the wireless network has energy constraints. Mobility of MANET would require the topology change frequently compared with a static network. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. Previously proposed a hybrid routing CACH prolong the network lifetime and decrease latency. However the algorithm has a problem when node density is increase. In this paper, we propose a new method that the CACHE(Context-aware Clustering Hierarchy and Energy efficient) algorithm. The proposed analysis could not only help in defining the optimum depth of hierarchy architecture CACH utilize, but also improve the problem about node density.

  • PDF

State of Health Estimation for Lithium-Ion Batteries Using Long-term Recurrent Convolutional Network (LRCN을 이용한 리튬 이온 배터리의 건강 상태 추정)

  • Hong, Seon-Ri;Kang, Moses;Jeong, Hak-Geun;Baek, Jong-Bok;Kim, Jong-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • A battery management system (BMS) provides some functions for ensuring safety and reliability that includes algorithms estimating battery states. Given the changes caused by various operating conditions, the state-of-health (SOH), which represents a figure of merit of the battery's ability to store and deliver energy, becomes challenging to estimate. Machine learning methods can be applied to perform accurate SOH estimation. In this study, we propose a Long-Term Recurrent Convolutional Network (LRCN) that combines the Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM) to extract aging characteristics and learn temporal mechanisms. The dataset collected by the battery aging experiments of NASA PCoE is used to train models. The input dataset used part of the charging profile. The accuracy of the proposed model is compared with the CNN and LSTM models using the k-fold cross-validation technique. The proposed model achieves a low RMSE of 2.21%, which shows higher accuracy than others in SOH estimation.

Application of artificial neural network for the critical flow prediction of discharge nozzle

  • Xu, Hong;Tang, Tao;Zhang, Baorui;Liu, Yuechan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.834-841
    • /
    • 2022
  • System thermal-hydraulic (STH) code is adopted for nuclear safety analysis. The critical flow model (CFM) is significant for the accuracy of STH simulation. To overcome the defects of current CFMs (low precision or long calculation time), a CFM based on a genetic neural network (GNN) has been developed in this work. To build a powerful model, besides the critical mass flux, the critical pressure and critical quality were also considered in this model, which was seldom considered before. Comparing with the traditional homogeneous equilibrium model (HEM) and the Moody model, the GNN model can predict the critical mass flux with a higher accuracy (approximately 80% of results are within the ±20% error limit); comparing with the Leung model and the Shannak model for critical pressure prediction, the GNN model achieved the best results (more than 80% prediction results within the ±20% error limit). For the critical quality, similar precision is achieved. The GNN-based CFM in this work is meaningful for the STH code CFM development.

Graph Assisted Resource Allocation for Energy Efficient IoT Computing

  • Mohammed, Alkhathami
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.140-146
    • /
    • 2023
  • Resource allocation is one of the top challenges in Internet of Things (IoT) networks. This is due to the scarcity of computing, energy and communication resources in IoT devices. As a result, IoT devices that are not using efficient algorithms for resource allocation may cause applications to fail and devices to get shut down. Owing to this challenge, this paper proposes a novel algorithm for managing computing resources in IoT network. The fog computing devices are placed near the network edge and IoT devices send their large tasks to them for computing. The goal of the algorithm is to conserve energy of both IoT nodes and the fog nodes such that all tasks are computed within a deadline. A bi-partite graph-based algorithm is proposed for stable matching of tasks and fog node computing units. The output of the algorithm is a stable mapping between the IoT tasks and fog computing units. Simulation results are conducted to evaluate the performance of the proposed algorithm which proves the improvement in terms of energy efficiency and task delay.

Advanced Adaptive Chain-Based EEACP Protocol Improvement Centered on Energy Efficiency in WSN Environment (WSN 환경에서 에너지 효율을 중심으로 한 적응형 체인 기반 EEACP 프로토콜 개선)

  • DaeKyun Cho;YeongWan Kim;GunWoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.879-884
    • /
    • 2024
  • Wireless sensor network technology is becoming increasingly important with the advancement of the Fourth Industrial Revolution. Consequently, various protocols such as LEACH, PEGASIS, and EEACP have been developed in an attempt to increase energy efficiency. However, the EEACP protocol still has room for improvement in terms of energy consumption during transmission. Particularly, inefficient paths associated with data reception settings may compromise the network's survivability. The proposed A-EEACP protocol optimizes data transmission direction around the sink node to reduce energy consumption and enhance the network's survivability.

An Effective Energy Supply Scheme for Network Lifetime Maximization in Cluster based Sensor Networks (클러스터 기반 센서 네트워크 수명 극대화를 위한 효율적인 에너지 공급 기법)

  • Choi, Yun-Bum;Kim, Yong-Ho;Jo, Myung-Ju;Kim, Hoon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.43-50
    • /
    • 2011
  • Sensor networks are expected to play key roles in establishment of fundamental infrastructures, information collection, and devices control to provide services for ubiquitous society in the near future, where recent issues include energy efficient energy supply scheme in the sensor network based systems has been getting more attention. This paper formulates an energy supply problem that minimizes the total energy supplied to clustered sensor networks while maintaining the network lifetime. An energy supply scheme is suggested that determines the the amount of engergy supply to each cluster head based on the solution of the problem. Simulation results show that the proposed scheme achieves better energy efficiency compared with a simple scheme of maximum possible energy supply to each cluster head.

Estimation Modelling of Energy Consumption and Anti-greening Impacts in Large-Scale Wired Access Networks (대규모 유선 액세스 네트워크 환경에서 에너지 소모량과 안티그리닝 영향도 추정 모델링 기법)

  • Suh, Yuhwa;Kim, Kiyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.928-941
    • /
    • 2016
  • Energy consumption of today's wired data networks is driven by access networks. Today, green networking has become a issue to reduce energy wastes and $CO_2$ emission by adding energy managing mechanism to wired data networks. However, energy consumption and environmental impacts of wired access networks are largely unknown. In addition, there is a lack of general and quantitative valuation basis of energy use of large-scale access networks and $CO_2$ emissions from them. This paper compared and analyzed limits of existing models estimating energy consumption of access networks and it proposed a model to estimate energy consumption of large-scale access networks by top-down approach. In addition, this work presented models that assess environmental(anti-greening) impacts of access networks using results from our models. The performance evaluation of the proposed models are achieved by comparing with previous models based on existing investigated materials and actual measured values in accordance with real cases.

The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network (엘만 순환 신경망을 사용한 전력 에너지 시계열의 예측 및 분석)

  • Lee, Chang-Yong;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.84-93
    • /
    • 2018
  • In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.