• Title/Summary/Keyword: Network energy

Search Result 3,758, Processing Time 0.033 seconds

A Modified E-LEACH Routing Protocol for Improving the Lifetime of a Wireless Sensor Network

  • Abdurohman, Maman;Supriadi, Yadi;Fahmi, Fitra Zul
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.845-858
    • /
    • 2020
  • This paper proposes a modified end-to-end secure low energy adaptive clustering hierarchy (ME-LEACH) algorithm for enhancing the lifetime of a wireless sensor network (WSN). Energy limitations are a major constraint in WSNs, hence every activity in a WSN must efficiently utilize energy. Several protocols have been introduced to modulate the way a WSN sends and receives information. The end-to-end secure low energy adaptive clustering hierarchy (E-LEACH) protocol is a hierarchical routing protocol algorithm proposed to solve high-energy dissipation problems. Other methods that explore the presence of the most powerful nodes on each cluster as cluster heads (CHs) are the sparsity-aware energy efficient clustering (SEEC) protocol and an energy efficient clustering-based routing protocol that uses an enhanced cluster formation technique accompanied by the fuzzy logic (EERRCUF) method. However, each CH in the E-LEACH method sends data directly to the base station causing high energy consumption. SEEC uses a lot of energy to identify the most powerful sensor nodes, while EERRCUF spends high amounts of energy to determine the super cluster head (SCH). In the proposed method, a CH will search for the nearest CH and use it as the next hop. The formation of CH chains serves as a path to the base station. Experiments were conducted to determine the performance of the ME-LEACH algorithm. The results show that ME-LEACH has a more stable and higher throughput than SEEC and EERRCUF and has a 35.2% better network lifetime than the E-LEACH algorithm.

Prediction of flow boiling heat transfer coefficient in horizontal channels varying from conventional to small-diameter scales by genetic neural network

  • Zhang, Jing;Ma, Yichao;Wang, Mingjun;Zhang, Dalin;Qiu, Suizheng;Tian, Wenxi;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1897-1904
    • /
    • 2019
  • Three-layer back propagation network (BPN) and genetic neural network (GNN) were developed in this study to predict the flow boiling heat transfer coefficient (HTC) in conventional and small-diameter channels. The GNN has higher precision than BPN (with root mean square errors of 17.16% and 20.50%, respectively) and other correlations. The inputs include vapor quality x, mass flux G, heat flux q, diameter D and physical parameter φ, and the predicted flow boiling HTC is set as the outputs. Influences of input parameters on the flow boiling HTC are discussed based on the trained GNN: nucleate boiling promoted by a larger saturated pressure, a larger heat flux and a smaller diameter is dominant in small channels; convective boiling improved by a larger mass flux and a larger vapor quality is more significant in conventional channels. The HTC increases with pressure both in conventional and small channels. The HTC in conventional channels rises when mass flux increases but remains almost unaffected in small channels. A larger heat flux leads to the HTC growth in small channels and an increase of HTC was observed in conventional channels at a higher vapor quality. HTC increases inversely with diameter before dry out.

Traffic Adaptive Transmission Algorithm for Energy Efficiency in WBAN (WBAN 환경에서 에너지 효율을 고려한 트래픽 적응형 전송 알고리즘)

  • Kim, Jinhyuk;Hong, Changki;Choi, Sangbang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.315-327
    • /
    • 2013
  • Wireless Body Area Network (WBAN) is a network around a human body within 3~5m which consists of medical or non-medical device. WBAN has to satisfy many kinds of demands such as low-power, a variety of data rate and a data priority. Especially, it is hard for the nodes for monitoring vital signs to replace battery. Thus energy and channel efficiency is important because the battery power is limited. In this thesis, a novel algorithm for reducing the energy consumption is proposed. The proposed algorithm adjusts transmission period according to traffic. by means of determining transmission period by amount of data, the node can reduce energy consumption. Energy detection is performed in order to guarantee data priority before attempting to transmit. In case of failing to transmit, it is proposed that energy consumption is reduced through avoiding collision by changing priority. The comparison result shows that the proposed algorithm reduces power consumption and increasing maximum channel efficiency by avoiding collision.

Energy Efficient Transmission Parameters Selection Method for CSMA/CA based HR-WPAN System under Ship Environment (선박환경에서 CSMA/CA기반 HR-WPAN 시스템의 에너지 효율적 전송파라미터 선택방식분석)

  • Park, Young-Min;Lee, Woo-Young;Lee, Seong-Ro;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.760-768
    • /
    • 2009
  • In this paper, we propose the energy efficient transmission parameter selection method for Wireless Personal Area Network (WPAN) system which is applied to e-Navigation system considering various ship models environment. An appropriate selection of transmission parameters of HR-WPAN system is very essential to be considered for saving WPAN devices' energy consumption, when HR-WPAN system is applied to ship area network (SAN). Therefore, we propose an energy consumption model for a ship area network employing IEEE 802.15.3 based CSMA/CA HR-WPAN model and analyze the effect of transmission parameter selection on the performance of energy consumption. In particular, the path loss is the major performance decision parameter for the SAN employing HR-WPAN system, since it varies according to the material of shipbuilding such as steel(for large ship), FRP(for medium size ship) and compound wood(for small ship). Thus, we analyze and demonstrate that the proper transmission parameter selection of transmit power, PHY data rate and fragment size for each ship model could guarantee energy efficiency.

A Cluster Based Energy Efficient Tree Routing Protocol in Wireless Sensor Networks (광역 WSN 을 위한 클러스팅 트리 라우팅 프로토콜)

  • Nurhayati, Nurhayati;Choi, Sung-Hee;Lee, Kyung-Oh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.576-579
    • /
    • 2011
  • Wireless sensor network are widely all over different fields. Because of its distinguished characteristics, we must take account of the factor of energy consumed when designing routing protocol. Wireless sensor networks consist of small battery powered devices with limited energy resources. Once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the network. In BCDCP, all sensors sends data from the CH (Cluster Head) and then to the BS (Base Station). BCDCP works well in a smallscale network however is not preferred in a large scale network since it uses much energy for long distance wireless communication. TBRP can be used for large scale network, but it weakness lies on the fact that the nodedry out of energy easily since it uses multi-hops transmission data to the Base Station. Here, we proposed a routing protocol. A Cluster Based Energy Efficient Tree Routing Protocol (CETRP) in Wireless Sensor Networks (WSNs) to prolong network life time through the balanced energy consumption. CETRP selects Cluster Head of cluster tree shape and uses maximum two hops data transmission to the Cluster Head in every level. We show CETRP outperforms BCDCP and TBRP with several experiments.

Clustering Ad hoc Network Scheme and Classifications Based on Context-aware

  • Mun, Chang-Min;Lee, Kang-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.475-479
    • /
    • 2009
  • In ad hoc network, the scarce energy management of the mobile devices has become a critical issue in order to extend the network lifetime. Current research activity for the Minimum Energy Multicast (MEM) problem has been focused on devising efficient centralized greedy algorithms for static ad hoc networks. In this paper, we consider mobile ad hoc networks(MANETs) that could provide the reliable monitoring and control of a variety of environments for remote place. Mobility of MANET would require the topology change frequently compared with a static network. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. In this paper, we propose a new method, the CACH(Context-aware Clustering Hierarchy) algorithm, a hybrid and clustering-based protocol that could analyze the link cost from a source node to a destination node. The proposed analysis could help in defining the optimum depth of hierarchy architecture CACH utilize. The proposed CACH could use localized condition to enable adaptation and robustness for dynamic network topology protocol and this provide that our hierarchy to be resilient. As a result, our simulation results would show that CACH could find energy efficient depth of hierarchy of a cluster.

Optimal Connection Algorithm of Two Kinds of Parts to Pairs using Hopfield Network (Hopfield Network를 이용한 이종 부품 결합의 최적화 알고리즘)

  • 오제휘;차영엽;고경용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.174-179
    • /
    • 1999
  • In this paper, we propose an optimal algorithm for finding the shortest connection of two kinds of parts to pairs. If total part numbers are of size N, then there are order 2ㆍ(N/2)$^{N}$ possible solutions, of which we want the one that minimizes the energy function. The appropriate dynamic rule and parameters used in network are proposed by a new energy function which is minimized when 3-constraints are satisfied. This dynamic nile has three important parameters, an enhancement variable connected to pairs, a normalized distance term and a time variable. The enhancement variable connected to pairs have to a perfect connection of two kinds of parts to pairs. The normalized distance term get rids of a unstable states caused by the change of total part numbers. And the time variable removes the un-optimal connection in the case of distance constraint and the wrong or not connection of two kinds of parts to pairs. First of all, we review the theoretical basis for Hopfield model and present a new energy function. Then, the connection matrix and the offset bias created by a new energy function and used in dynamic nile are shown. Finally, we show examples through computer simulation with 20, 30 and 40 parts and discuss the stability and feasibility of the resultant solutions for the proposed connection algorithm.m.

  • PDF

Efficient Energy and Position Aware Routing Protocol for Wireless Sensor Networks

  • Shivalingagowda, Chaya;Jayasree, P.V.Y;Sah, Dinesh.K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1929-1950
    • /
    • 2020
  • Reliable and secure data transmission in the application environment assisted by the wireless sensor network is one of the major challenges. Problem like blind forwarding and data inaccessibility affect the efficiency of overall infrastructure performance. This paper proposes routing protocol for forwarding and error recovery during packet loss. The same is achieved by energy and hops distance-based formulation of the routing mechanism. The reachability of the intermediate node to the source node is the major factor that helps in improving the lifetime of the network. On the other hand, intelligent hop selection increases the reliability over continuous data transmission. The number of hop count is factor of hop weight and available energy of the node. The comparison over the previous state of the art using QualNet-7.4 network simulator shows the effectiveness of proposed work in terms of overall energy conservation of network and reliable data delivery. The simulation results also show the elimination of blind forwarding and data inaccessibility.

MODELING THE HYDRAULIC CHARACTERISTICS OF A FRACTURED ROCK MASS WITH CORRELATED FRACTURE LENGTH AND APERTURE: APPLICATION IN THE UNDERGROUND RESEARCH TUNNEL AT KAERI

  • Bang, Sang-Hyuk;Jeon, Seok-Won;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.639-652
    • /
    • 2012
  • A three-dimensional discrete fracture network model was developed in order to simulate the hydraulic characteristics of a granitic rock mass at Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The model used a three-dimensional discrete fracture network (DFN), assuming a correlation between the length and aperture of the fractures, and a trapezoid flow path in the fractures. These assumptions that previous studies have not considered could make the developed model more practical and reasonable. The geologic and hydraulic data of the fractures were obtained in the rock mass at the KURT. Then, these data were applied to the developed fracture discrete network model. The model was applied in estimating the representative elementary volume (REV), the equivalent hydraulic conductivity tensors, and the amount of groundwater inflow into the tunnel. The developed discrete fracture network model can determine the REV size for the rock mass with respect to the hydraulic behavior and estimate the groundwater flow into the tunnel at the KURT. Therefore, the assumptions that the fracture length is correlated to the fracture aperture and the flow in a fracture occurs in a trapezoid shape appear to be effective in the DFN analysis used to estimate the hydraulic behavior of the fractured rock mass.

Yellow-Light TCP: Energy-Saving Protocol for Mobile Data Transmission (Yellow-Light TCP: 모바일 데이터 전송을 위한 에너지 절감형 프로토콜)

  • Choi, Won-Jun;Ramneek, Ramneek;Seok, Woo-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.478-490
    • /
    • 2015
  • Abundant data has been generated over the internet as the arrival of information age. To share the information, Wired, wireless network are required to transmit the data. Especially, In the wireless network which is using mobile device based on battery, energy consumption is growing due to uploading, downloading the abundant data on mobile device. In order to solve the problem, This paper addresses the protocol of the modified TCP congestion control that is being used for the most network protocol to save energy.