DOI QR코드

DOI QR Code

Prediction of flow boiling heat transfer coefficient in horizontal channels varying from conventional to small-diameter scales by genetic neural network

  • Zhang, Jing (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University) ;
  • Ma, Yichao (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University) ;
  • Wang, Mingjun (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University) ;
  • Zhang, Dalin (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University) ;
  • Qiu, Suizheng (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University) ;
  • Tian, Wenxi (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University) ;
  • Su, Guanghui (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University)
  • Received : 2019.03.01
  • Accepted : 2019.06.08
  • Published : 2019.12.25

Abstract

Three-layer back propagation network (BPN) and genetic neural network (GNN) were developed in this study to predict the flow boiling heat transfer coefficient (HTC) in conventional and small-diameter channels. The GNN has higher precision than BPN (with root mean square errors of 17.16% and 20.50%, respectively) and other correlations. The inputs include vapor quality x, mass flux G, heat flux q, diameter D and physical parameter φ, and the predicted flow boiling HTC is set as the outputs. Influences of input parameters on the flow boiling HTC are discussed based on the trained GNN: nucleate boiling promoted by a larger saturated pressure, a larger heat flux and a smaller diameter is dominant in small channels; convective boiling improved by a larger mass flux and a larger vapor quality is more significant in conventional channels. The HTC increases with pressure both in conventional and small channels. The HTC in conventional channels rises when mass flux increases but remains almost unaffected in small channels. A larger heat flux leads to the HTC growth in small channels and an increase of HTC was observed in conventional channels at a higher vapor quality. HTC increases inversely with diameter before dry out.

Keywords

References

  1. G.H. Su, K. Fukuda, D. Jia, K. Morita, Application of an artificial neural network in reactor thermohydraulic problem: prediction of critical heat flux, J. Nucl. Sci. Technol. 39 (5) (2002) 564-571. https://doi.org/10.3327/jnst.39.564
  2. J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (3) (1966) 322-329. https://doi.org/10.1021/i260019a023
  3. M.M. Shah, Chart correlation for saturated boiling heat-transfer: equations and further study, ASHRAE Trans. 88 (1) (1982) 85-96.
  4. K. Gungor, R. Winter, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transf. 29 (3) (1986) 351-358. https://doi.org/10.1016/0017-9310(86)90205-X
  5. S.G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, J. Heat Transf. 112 (1) (1990) 219-228. https://doi.org/10.1115/1.2910348
  6. D. Jung, R. Radermacher, Transport properties and surface tension of pure and mixed refrigerants, ASHRAE Trans. 97 (1) (1991) 90-99.
  7. J.P. Wattelet, Evaporative Characteristics of R-12, R-134a and a Mixture at Low Mass Fluxes, ASHRAE Transaction, 1994, pp. 603-615.
  8. C.S. Kuo, C.C. Wang, In-tube evaporation of HCFC-22 in a 9.52 mm micro-fin/smooth tube, Int. J. Heat Mass Transf. 39 (12) (1996) 2559-2569. https://doi.org/10.1016/0017-9310(95)00326-6
  9. M.H. Kim, J.S. Shin, Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes, Int. J. Refrig. 28 (6) (2005) 940-948. https://doi.org/10.1016/j.ijrefrig.2005.01.016
  10. K. Seo, Y. Kim, Evaporation heat transfer and pressure drop of R-22 in 7 and 9.52 mm smooth/micro-fin tubes, Int. J. Heat Mass Transf. 43 (16) (2000) 2869-2882. https://doi.org/10.1016/S0017-9310(99)00338-5
  11. A. Greco, G.P. Vanoli, Evaporation of refrigerants in a smooth horizontal tube: prediction of R22 and R507 heat transfer coefficients and pressure drop, Appl. Therm. Eng. 24 (14) (2004) 2189-2206. https://doi.org/10.1016/j.applthermaleng.2004.02.006
  12. H. Hu, G. Ding, K. Wang, Heat transfer characteristics of R410A-oil mixture flow boiling inside a 7mm straight microfin tube, Int. J. Refrig. 31 (6) (2008) 1081-1093. https://doi.org/10.1016/j.ijrefrig.2007.12.004
  13. Y. Kim, K. Seo, J.T. Chung, Evaporation heat transfer characteristics of R-410A in 7 and 9.52 mm smooth/micro-fin tubes, Int. J. Refrig. 25 (6) (2002) 716-730. https://doi.org/10.1016/S0140-7007(01)00070-6
  14. O. Zurcher, D. Favrat, J.R. Thome, Evaporation of refrigerants in a horizontal tube: an improved flow pattern dependent heat transfer model compared to ammonia data, Int. J. Heat Mass Transf. 45 (2) (2002) 303-317. https://doi.org/10.1016/S0017-9310(01)00145-4
  15. X.M. Dong, P.D. Juliana, D. Liu, J. Wang, Z.J. Zhang, Z.F. Tian, Numerical investigation of azimuthal heat conduction effects on CHF phenomenon in rod bundle channel, Ann. Nucl. Energy 121 (2018) 203-209. https://doi.org/10.1016/j.anucene.2018.07.033
  16. G.M. Lazarek, S.H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, Int. J. Heat Mass Transf. 25 (7) (1982) 945-960. https://doi.org/10.1016/0017-9310(82)90070-9
  17. X.F. Peng, B.X. Wang, Forced convection and flow boiling heat transfer for liquid flowing through microchannels, Int. J. Heat Mass Transf. 36 (14) (1993) 3421-3427. https://doi.org/10.1016/0017-9310(93)90160-8
  18. T.N. Tran, M.W. Wambsganss, J.A. Jendrzejczyk, et al., in: Boiling Heat Transfer in a Small Horizontal Rectangular Channel (No. ANL/MCT/CP-78815; CONF-930830-27), Argonne National Lab., IL, 1993.
  19. T.N. Tran, M.W. Wambsganss, D.M. France, Small circular-and rectangular-channel boiling with two refrigerants, Int. J. Multiph. Flow 22 (3) (1996) 485-498. https://doi.org/10.1016/0301-9322(96)00002-X
  20. M. Wambsganss, J. Jendrzejczyk, T. Tran, et al., Boiling heat transfer in a horizontal small-diameter tube, J. Heat Transf. 115 (4) (1993) 963-972. https://doi.org/10.1115/1.2911393
  21. A.S. Pamitran, K.I. Choi, J.T. Oh, et al., Two-phase flow heat transfer of propane vaporization in horizontal minichannels, J. Mech. Sci. Technol. 23 (3) (2009) 599-606. https://doi.org/10.1007/s12206-008-0913-8
  22. W. Zhang, T. Hibiki, K. Mishima, Correlation for flow boiling heat transfer in mini-channels, Int. J. Heat Mass Transf. 47 (26) (2004) 5749-5763. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.034
  23. S.G. Kandlikar, M. Steinke, Predicting Heat Transfer during Flow Boiling in Minichannels and Microchannels, 2003.
  24. A.E. Bergles, V.J.H. Lienhard, G.E. Kendall, et al., Boiling and evaporation in small diameter channels, Heat Transf. Eng. 24 (1) (2003) 18-40. https://doi.org/10.1080/01457630304041
  25. S.S. Bertsch, E.A. Groll, S.V. Garimella, Review and comparative analysis of studies on saturated flow boiling in small channels, Nanoscale Microscale Thermophys. Eng. 12 (3) (2008) 187-227. https://doi.org/10.1080/15567260802317357
  26. S.G. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels, Exp. Therm. Fluid Sci. 26 (2) (2002) 389-407. https://doi.org/10.1016/S0894-1777(02)00150-4
  27. D. Mikielewicz, A new method for determination of flow boiling heat transfer coefficient in conventional-diameter channels and minichannels, Heat Transf. Eng. 31 (4) (2010) 276-287. https://doi.org/10.1080/01457630903311694
  28. Y. Islamoglu, A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger--use of an artificial neural network model, Appl. Therm. Eng. 23 (2) (2003) 243-249. https://doi.org/10.1016/S1359-4311(02)00155-2
  29. K. Jambunathan, S.L. Hartle, S. Ashforth-Frost, V.N. Fontama, et al., Evaluating convective heat transfer coefficients using neural networks, Int. J. Heat Mass Transf. 39 (11) (1996) 2329-2332. https://doi.org/10.1016/0017-9310(95)00332-0
  30. S.S. Sablani, A neural network approach for non-iterative calculation of heat transfer coefficient in fluid-particle systems, Chem. Eng. Process: Process Intensification 40 (4) (2001) 363-369. https://doi.org/10.1016/S0255-2701(01)00111-8
  31. G. Scalabrin, L. Piazza, Analysis of forced convection heat transfer to supercritical carbon dioxide inside tubes using neural networks, Int. J. Heat Mass Transf. 46 (7) (2003) 1139-1154. https://doi.org/10.1016/S0017-9310(02)00382-4
  32. W.J. Wang, L.X. Zhao, C.L. Zhang, Generalized neural network correlation for flow boiling heat transfer of R22 and its alternative refrigerants inside horizontal smooth tubes, Int. J. Heat Mass Transf. 49 (15) (2006) 2458-2465. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.021
  33. N. Amanifard, N. Nariman-Zadeh, M. Borji, et al., Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms, Energy Convers. Manag. 49 (2) (2008) 311-325. https://doi.org/10.1016/j.enconman.2007.06.002
  34. R. Baby, C. Balaji, Thermal optimization of PCM based pin fin heat sinks: an experimental study, Appl. Therm. Eng. 54 (1) (2013) 65-77. https://doi.org/10.1016/j.applthermaleng.2012.10.056
  35. M. Mehrabi, M. Sharifpur, J.P. Meyer, Application of the FCM-based neurofuzzy inference system and genetic algorithm-polynomial neural network approaches to modelling the thermal conductivity of alumina-water nano-fluids, Int. Commun. Heat Mass Transf. 39 (7) (2012) 971-977. https://doi.org/10.1016/j.icheatmasstransfer.2012.05.017
  36. A. Mirsepahi, L. Chen, B.K. O'Neill, A comparative artificial intelligence approach to inverse heat transfer modeling of an irradiative dryer, Int. Commun. Heat Mass Transf. 41 (2013) 19-27. https://doi.org/10.1016/j.icheatmasstransfer.2012.09.011
  37. J. Zhang, R.H. Chen, M.J. Wang, W.X. Tian, G.H. Su, et al., Prediction of LBB leakage for various conditions by genetic neural network and genetic algorithms, Nucl. Eng. Des. 325 (2017) 33-43. https://doi.org/10.1016/j.nucengdes.2017.09.027
  38. Yao, A review of evolutionary artificial neural networks, Int. J. Intell. Syst. 8 (1993) 539-567. https://doi.org/10.1002/int.4550080406
  39. Juergen Schmidhuber, Deep learning in neural networks: an overview, Neural Network. 61 (2015) 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
  40. M. Balcilar, A.S. Dalkilic, S. Wongwises, Artificial neural network techniques for the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube, Heat Mass Transf. 38 (1) (2011) 75-84. https://doi.org/10.1007/s002310100190
  41. S. Haykin, Neural Networks, Practice-Hall Press, New Jersey, 1999.
  42. D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms, in: G. Rawlins (Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1992, pp. 69-93.
  43. A. Greco, Convective boiling of pure and mixed refrigerants: an experimental study of the major parameters affecting heat transfer, Int. J. Heat Mass Transf. 51 (3) (2008) 896-909. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.002
  44. L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part I - a new diabatic two-phase flow pattern map, Int. J. Heat Mass Transf. 48 (14) (2005a) 2955-2969. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.012
  45. L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part II - development of a new heat transfer model for stratifiedwavy, dryout and mist flow regimes, Int. J. Heat Mass Transf. 48 (14) (2005b) 2970-2985. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.013
  46. K.H. Bang, K.E. Hong, I.S. Hwang, Flow boiling of water in mini-channels: effect of pressure, in: Proceedings of the 5th International Conference on Nano-channels, Microchannels and Mini-channels, Puebla, Mexico, 2007.
  47. K.H. Bang, K.K. Kim, S.K. Lee, et al., Pressure effect on flow boiling heat transfer of water in minichannels, Int. J. Therm. Sci. 50 (3) (2011) 280-286. https://doi.org/10.1016/j.ijthermalsci.2010.03.011
  48. Z.Y. Bao, D.F. Fletcher, B.S. Haynes, Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages, Int. J. Heat Mass Transf. 43 (18) (2000) 3347-3358. https://doi.org/10.1016/S0017-9310(99)00379-8
  49. K.I. Choi, A.S. Pamitran, C.Y. Oh, et al., Boiling heat transfer of R-22, R-134a, and $CO_2$ in horizontal smooth minichannels, Int. J. Refrig. 30 (8) (2007) 1336-1346. https://doi.org/10.1016/j.ijrefrig.2007.04.007
  50. E.P.B. Filhoa, J.M.S. Jabardob, Convective boiling performance of refrigerant R-134a in herringbone and microfin copper tubes, Int. J. Refrig. 29 (1) (2006) 81-91. https://doi.org/10.1016/j.ijrefrig.2005.05.011
  51. D. Jung, Y. Cho, K. Park, Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and microfin tubes, Int. J. Refrig. 27 (1) (2004) 25-32. https://doi.org/10.1016/S0140-7007(03)00122-1
  52. K. Kuwahara, S. Koyama, Y. Hashimoto, Characteristics of evaporation heat transfer and flow pattern of pure refrigerant HFC134a in a horizontal capillary tube, Fluid. Ther. Eng. 43 (4) (2000) 640-646.
  53. A.S. Pamitran, K.I. Choi, J.T. Oh, Two-phase flow boiling heat transfer and pressure drop with R-407C, R-410A, R-22, and CO2 in horizontal minichannels, in: International Heat Transfer Conference 13, Begel House Inc, 2006.
  54. A.S. Pamitran, K.I. Choi, J.T. Oh, et al., Forced convective boiling heat transfer of R-410A in horizontal minichannels, Int. J. Refrig. 30 (1) (2007) 155-165. https://doi.org/10.1016/j.ijrefrig.2006.06.005
  55. R. Yun, H.J. Hyeok, Y. Kim, Evaporative heat transfer and pressure drop of R410A in microchannels, Int. J. Refrig. 29 (1) (2006) 92-100. https://doi.org/10.1016/j.ijrefrig.2005.08.005
  56. L.M. Zhang, Artificial Neural Network Model and its Application [M], Shanghai:Fu Dan University Press, 1993 (in Chinese).
  57. A.M. Jacobi, J.R. Thome, Heat transfer model for evaporation of elongated bubble flows in microchannels, J. Heat Transf. 124 (6) (2002) 1131-1136. https://doi.org/10.1115/1.1517274
  58. M. Gui, Q.C. Bi, G. Zhu, J. Wang, T. Wang, Experimental investigation on heat transfer performance of C-shape tube immerged in a water pool, Nucl. Eng. Des. 346 (2019) 220-229. https://doi.org/10.1016/j.nucengdes.2019.02.022

Cited by

  1. Development of a new method for estimating the overall heat transfer coefficient of heat exchangers - Validation in automotive applications vol.28, 2019, https://doi.org/10.1016/j.csite.2021.101434