References
- G.H. Su, K. Fukuda, D. Jia, K. Morita, Application of an artificial neural network in reactor thermohydraulic problem: prediction of critical heat flux, J. Nucl. Sci. Technol. 39 (5) (2002) 564-571. https://doi.org/10.3327/jnst.39.564
- J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (3) (1966) 322-329. https://doi.org/10.1021/i260019a023
- M.M. Shah, Chart correlation for saturated boiling heat-transfer: equations and further study, ASHRAE Trans. 88 (1) (1982) 85-96.
- K. Gungor, R. Winter, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transf. 29 (3) (1986) 351-358. https://doi.org/10.1016/0017-9310(86)90205-X
- S.G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, J. Heat Transf. 112 (1) (1990) 219-228. https://doi.org/10.1115/1.2910348
- D. Jung, R. Radermacher, Transport properties and surface tension of pure and mixed refrigerants, ASHRAE Trans. 97 (1) (1991) 90-99.
- J.P. Wattelet, Evaporative Characteristics of R-12, R-134a and a Mixture at Low Mass Fluxes, ASHRAE Transaction, 1994, pp. 603-615.
- C.S. Kuo, C.C. Wang, In-tube evaporation of HCFC-22 in a 9.52 mm micro-fin/smooth tube, Int. J. Heat Mass Transf. 39 (12) (1996) 2559-2569. https://doi.org/10.1016/0017-9310(95)00326-6
- M.H. Kim, J.S. Shin, Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes, Int. J. Refrig. 28 (6) (2005) 940-948. https://doi.org/10.1016/j.ijrefrig.2005.01.016
- K. Seo, Y. Kim, Evaporation heat transfer and pressure drop of R-22 in 7 and 9.52 mm smooth/micro-fin tubes, Int. J. Heat Mass Transf. 43 (16) (2000) 2869-2882. https://doi.org/10.1016/S0017-9310(99)00338-5
- A. Greco, G.P. Vanoli, Evaporation of refrigerants in a smooth horizontal tube: prediction of R22 and R507 heat transfer coefficients and pressure drop, Appl. Therm. Eng. 24 (14) (2004) 2189-2206. https://doi.org/10.1016/j.applthermaleng.2004.02.006
- H. Hu, G. Ding, K. Wang, Heat transfer characteristics of R410A-oil mixture flow boiling inside a 7mm straight microfin tube, Int. J. Refrig. 31 (6) (2008) 1081-1093. https://doi.org/10.1016/j.ijrefrig.2007.12.004
- Y. Kim, K. Seo, J.T. Chung, Evaporation heat transfer characteristics of R-410A in 7 and 9.52 mm smooth/micro-fin tubes, Int. J. Refrig. 25 (6) (2002) 716-730. https://doi.org/10.1016/S0140-7007(01)00070-6
- O. Zurcher, D. Favrat, J.R. Thome, Evaporation of refrigerants in a horizontal tube: an improved flow pattern dependent heat transfer model compared to ammonia data, Int. J. Heat Mass Transf. 45 (2) (2002) 303-317. https://doi.org/10.1016/S0017-9310(01)00145-4
- X.M. Dong, P.D. Juliana, D. Liu, J. Wang, Z.J. Zhang, Z.F. Tian, Numerical investigation of azimuthal heat conduction effects on CHF phenomenon in rod bundle channel, Ann. Nucl. Energy 121 (2018) 203-209. https://doi.org/10.1016/j.anucene.2018.07.033
- G.M. Lazarek, S.H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, Int. J. Heat Mass Transf. 25 (7) (1982) 945-960. https://doi.org/10.1016/0017-9310(82)90070-9
- X.F. Peng, B.X. Wang, Forced convection and flow boiling heat transfer for liquid flowing through microchannels, Int. J. Heat Mass Transf. 36 (14) (1993) 3421-3427. https://doi.org/10.1016/0017-9310(93)90160-8
- T.N. Tran, M.W. Wambsganss, J.A. Jendrzejczyk, et al., in: Boiling Heat Transfer in a Small Horizontal Rectangular Channel (No. ANL/MCT/CP-78815; CONF-930830-27), Argonne National Lab., IL, 1993.
- T.N. Tran, M.W. Wambsganss, D.M. France, Small circular-and rectangular-channel boiling with two refrigerants, Int. J. Multiph. Flow 22 (3) (1996) 485-498. https://doi.org/10.1016/0301-9322(96)00002-X
- M. Wambsganss, J. Jendrzejczyk, T. Tran, et al., Boiling heat transfer in a horizontal small-diameter tube, J. Heat Transf. 115 (4) (1993) 963-972. https://doi.org/10.1115/1.2911393
- A.S. Pamitran, K.I. Choi, J.T. Oh, et al., Two-phase flow heat transfer of propane vaporization in horizontal minichannels, J. Mech. Sci. Technol. 23 (3) (2009) 599-606. https://doi.org/10.1007/s12206-008-0913-8
- W. Zhang, T. Hibiki, K. Mishima, Correlation for flow boiling heat transfer in mini-channels, Int. J. Heat Mass Transf. 47 (26) (2004) 5749-5763. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.034
- S.G. Kandlikar, M. Steinke, Predicting Heat Transfer during Flow Boiling in Minichannels and Microchannels, 2003.
- A.E. Bergles, V.J.H. Lienhard, G.E. Kendall, et al., Boiling and evaporation in small diameter channels, Heat Transf. Eng. 24 (1) (2003) 18-40. https://doi.org/10.1080/01457630304041
- S.S. Bertsch, E.A. Groll, S.V. Garimella, Review and comparative analysis of studies on saturated flow boiling in small channels, Nanoscale Microscale Thermophys. Eng. 12 (3) (2008) 187-227. https://doi.org/10.1080/15567260802317357
- S.G. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels, Exp. Therm. Fluid Sci. 26 (2) (2002) 389-407. https://doi.org/10.1016/S0894-1777(02)00150-4
- D. Mikielewicz, A new method for determination of flow boiling heat transfer coefficient in conventional-diameter channels and minichannels, Heat Transf. Eng. 31 (4) (2010) 276-287. https://doi.org/10.1080/01457630903311694
- Y. Islamoglu, A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger--use of an artificial neural network model, Appl. Therm. Eng. 23 (2) (2003) 243-249. https://doi.org/10.1016/S1359-4311(02)00155-2
- K. Jambunathan, S.L. Hartle, S. Ashforth-Frost, V.N. Fontama, et al., Evaluating convective heat transfer coefficients using neural networks, Int. J. Heat Mass Transf. 39 (11) (1996) 2329-2332. https://doi.org/10.1016/0017-9310(95)00332-0
- S.S. Sablani, A neural network approach for non-iterative calculation of heat transfer coefficient in fluid-particle systems, Chem. Eng. Process: Process Intensification 40 (4) (2001) 363-369. https://doi.org/10.1016/S0255-2701(01)00111-8
- G. Scalabrin, L. Piazza, Analysis of forced convection heat transfer to supercritical carbon dioxide inside tubes using neural networks, Int. J. Heat Mass Transf. 46 (7) (2003) 1139-1154. https://doi.org/10.1016/S0017-9310(02)00382-4
- W.J. Wang, L.X. Zhao, C.L. Zhang, Generalized neural network correlation for flow boiling heat transfer of R22 and its alternative refrigerants inside horizontal smooth tubes, Int. J. Heat Mass Transf. 49 (15) (2006) 2458-2465. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.021
- N. Amanifard, N. Nariman-Zadeh, M. Borji, et al., Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms, Energy Convers. Manag. 49 (2) (2008) 311-325. https://doi.org/10.1016/j.enconman.2007.06.002
- R. Baby, C. Balaji, Thermal optimization of PCM based pin fin heat sinks: an experimental study, Appl. Therm. Eng. 54 (1) (2013) 65-77. https://doi.org/10.1016/j.applthermaleng.2012.10.056
- M. Mehrabi, M. Sharifpur, J.P. Meyer, Application of the FCM-based neurofuzzy inference system and genetic algorithm-polynomial neural network approaches to modelling the thermal conductivity of alumina-water nano-fluids, Int. Commun. Heat Mass Transf. 39 (7) (2012) 971-977. https://doi.org/10.1016/j.icheatmasstransfer.2012.05.017
- A. Mirsepahi, L. Chen, B.K. O'Neill, A comparative artificial intelligence approach to inverse heat transfer modeling of an irradiative dryer, Int. Commun. Heat Mass Transf. 41 (2013) 19-27. https://doi.org/10.1016/j.icheatmasstransfer.2012.09.011
- J. Zhang, R.H. Chen, M.J. Wang, W.X. Tian, G.H. Su, et al., Prediction of LBB leakage for various conditions by genetic neural network and genetic algorithms, Nucl. Eng. Des. 325 (2017) 33-43. https://doi.org/10.1016/j.nucengdes.2017.09.027
- Yao, A review of evolutionary artificial neural networks, Int. J. Intell. Syst. 8 (1993) 539-567. https://doi.org/10.1002/int.4550080406
- Juergen Schmidhuber, Deep learning in neural networks: an overview, Neural Network. 61 (2015) 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
- M. Balcilar, A.S. Dalkilic, S. Wongwises, Artificial neural network techniques for the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube, Heat Mass Transf. 38 (1) (2011) 75-84. https://doi.org/10.1007/s002310100190
- S. Haykin, Neural Networks, Practice-Hall Press, New Jersey, 1999.
- D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms, in: G. Rawlins (Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1992, pp. 69-93.
- A. Greco, Convective boiling of pure and mixed refrigerants: an experimental study of the major parameters affecting heat transfer, Int. J. Heat Mass Transf. 51 (3) (2008) 896-909. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.002
- L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part I - a new diabatic two-phase flow pattern map, Int. J. Heat Mass Transf. 48 (14) (2005a) 2955-2969. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.012
- L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part II - development of a new heat transfer model for stratifiedwavy, dryout and mist flow regimes, Int. J. Heat Mass Transf. 48 (14) (2005b) 2970-2985. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.013
- K.H. Bang, K.E. Hong, I.S. Hwang, Flow boiling of water in mini-channels: effect of pressure, in: Proceedings of the 5th International Conference on Nano-channels, Microchannels and Mini-channels, Puebla, Mexico, 2007.
- K.H. Bang, K.K. Kim, S.K. Lee, et al., Pressure effect on flow boiling heat transfer of water in minichannels, Int. J. Therm. Sci. 50 (3) (2011) 280-286. https://doi.org/10.1016/j.ijthermalsci.2010.03.011
- Z.Y. Bao, D.F. Fletcher, B.S. Haynes, Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages, Int. J. Heat Mass Transf. 43 (18) (2000) 3347-3358. https://doi.org/10.1016/S0017-9310(99)00379-8
-
K.I. Choi, A.S. Pamitran, C.Y. Oh, et al., Boiling heat transfer of R-22, R-134a, and
$CO_2$ in horizontal smooth minichannels, Int. J. Refrig. 30 (8) (2007) 1336-1346. https://doi.org/10.1016/j.ijrefrig.2007.04.007 - E.P.B. Filhoa, J.M.S. Jabardob, Convective boiling performance of refrigerant R-134a in herringbone and microfin copper tubes, Int. J. Refrig. 29 (1) (2006) 81-91. https://doi.org/10.1016/j.ijrefrig.2005.05.011
- D. Jung, Y. Cho, K. Park, Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and microfin tubes, Int. J. Refrig. 27 (1) (2004) 25-32. https://doi.org/10.1016/S0140-7007(03)00122-1
- K. Kuwahara, S. Koyama, Y. Hashimoto, Characteristics of evaporation heat transfer and flow pattern of pure refrigerant HFC134a in a horizontal capillary tube, Fluid. Ther. Eng. 43 (4) (2000) 640-646.
- A.S. Pamitran, K.I. Choi, J.T. Oh, Two-phase flow boiling heat transfer and pressure drop with R-407C, R-410A, R-22, and CO2 in horizontal minichannels, in: International Heat Transfer Conference 13, Begel House Inc, 2006.
- A.S. Pamitran, K.I. Choi, J.T. Oh, et al., Forced convective boiling heat transfer of R-410A in horizontal minichannels, Int. J. Refrig. 30 (1) (2007) 155-165. https://doi.org/10.1016/j.ijrefrig.2006.06.005
- R. Yun, H.J. Hyeok, Y. Kim, Evaporative heat transfer and pressure drop of R410A in microchannels, Int. J. Refrig. 29 (1) (2006) 92-100. https://doi.org/10.1016/j.ijrefrig.2005.08.005
- L.M. Zhang, Artificial Neural Network Model and its Application [M], Shanghai:Fu Dan University Press, 1993 (in Chinese).
- A.M. Jacobi, J.R. Thome, Heat transfer model for evaporation of elongated bubble flows in microchannels, J. Heat Transf. 124 (6) (2002) 1131-1136. https://doi.org/10.1115/1.1517274
- M. Gui, Q.C. Bi, G. Zhu, J. Wang, T. Wang, Experimental investigation on heat transfer performance of C-shape tube immerged in a water pool, Nucl. Eng. Des. 346 (2019) 220-229. https://doi.org/10.1016/j.nucengdes.2019.02.022
Cited by
- Development of a new method for estimating the overall heat transfer coefficient of heat exchangers - Validation in automotive applications vol.28, 2019, https://doi.org/10.1016/j.csite.2021.101434