• Title/Summary/Keyword: Network energy

Search Result 3,748, Processing Time 0.032 seconds

Energy-Efficient Resource Allocation for Heterogeneous Cognitive Radio Network based on Two-Tier Crossover Genetic Algorithm

  • Jiao, Yan;Joe, Inwhee
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.112-122
    • /
    • 2016
  • Cognitive radio (CR) is considered an attractive technology to deal with the spectrum scarcity problem. Multi-radio access technology (multi-RAT) can improve network capacity because data are transmitted by multiple RANs (radio access networks) concurrently. Thus, multi-RAT embedded in a cognitive radio network (CRN) is a promising paradigm for developing spectrum efficiency and network capacity in future wireless networks. In this study, we consider a new CRN model in which the primary user networks consist of heterogeneous primary users (PUs). Specifically, we focus on the energy-efficient resource allocation (EERA) problem for CR users with a special location coverage overlapping region in which heterogeneous PUs operate simultaneously via multi-RAT. We propose a two-tier crossover genetic algorithm-based search scheme to obtain an optimal solution in terms of the power and bandwidth. In addition, we introduce a radio environment map to manage the resource allocation and network synchronization. The simulation results show the proposed algorithm is stable and has faster convergence. Our proposal can significantly increase the energy efficiency.

Alarm Diagnosis of RCP Monitoring System using Self Dynamic Neural Networks (자기 동적 신경망을 이용한 RCP 감시 시스템의 경보진단)

  • Yu, Dong-Wan;Kim, Dong-Hun;Seong, Seung-Hwan;Gu, In-Su;Park, Seong-Uk;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.512-519
    • /
    • 2000
  • A Neural networks has been used for a expert system and fault diagnosis system. It is possible to nonlinear function mapping and parallel processing. Therefore It has been developing for a Diagnosis system of nuclear plower plant. In general Neural Networks is a static mapping but Dynamic Neural Network(DNN) is dynamic mapping.쪼두 a fault occur in system a state of system is changed with transient state. Because of a previous state signal is considered as a information DNN is better suited for diagnosis systems than static neural network. But a DNN has many weights so a real time implementation of diagnosis system is in need of a rapid network architecture. This paper presents a algorithm for RCP monitoring Alarm diagnosis system using Self Dynamic Neural Network(SDNN). SDNN has considerably fewer weights than a general DNN. Since there is no interlink among the hidden layer. The effectiveness of Alarm diagnosis system using the proposed algorithm is demonstrated by applying to RCP monitoring in Nuclear power plant.

  • PDF

Node Incentive Mechanism in Selfish Opportunistic Network

  • WANG, Hao-tian;Chen, Zhi-gang;WU, Jia;WANG, Lei-lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1481-1501
    • /
    • 2019
  • In opportunistic network, the behavior of a node is autonomous and has social attributes such as selfishness.If a node wants to forward information to another node, it is bound to be limited by the node's own resources such as cache, power, and energy.Therefore, in the process of communication, some nodes do not help to forward information of other nodes because of their selfish behavior. This will lead to the inability to complete cooperation, greatly reduce the success rate of message transmission, increase network delay, and affect the overall network performance. This article proposes a hybrid incentive mechanism (Mim) based on the Reputation mechanism and the Credit mechanism.The selfishness model, energy model (The energy in the article exists in the form of electricity) and transaction model constitute our Mim mechanism. The Mim classifies the selfishness of nodes and constantly pay attention to changes in node energy, and manage the wealth of both sides of the node by introducing the Central Money Management Center. By calculating the selfishness of the node, the currency trading model is used to differentiate pricing of the node's services. Simulation results show that by using the Mim, the information delivery rate in the network and the fairness of node transactions are improved. At the same time, it also greatly increases the average life of the network.

A Study on Cluster Head Selection Based on Distance from Sensor to Base Station in Wireless Sensor Network (무선센서 네트워크에서 센서와 기지국과의 거리를 고려한 클러스터 헤드 선택기법)

  • Ko, Sung-Won;Cho, Jeong-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.50-58
    • /
    • 2013
  • In Wireless Sensor Network, clustering scheme is used to prolong the lifetime of WSN by efficient usage of energy of sensor. In the distributed clustering protocol just like LEACH, every sensor in a network plays a cluster head role once during each epoch. So the FND is prolonged. But, even though every sensor plays a head role, the energy consumed by each sensor is different because the energy consumed increases according to the distance to the Base Station by the way of multiple increase. In this paper, we propose a mechanism to select a head depending on the distance to Base Station, which extends the timing of FND occurrence by 68% compared to the LEACH and makes network stable.

MODELLING THE DYNAMICS OF THE LEAD BISMUTH EUTECTIC EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM BY AN INFINITE IMPULSE RESPONSE LOCALLY RECURRENT NEURAL NETWORK

  • Zio, Enrico;Pedroni, Nicola;Broggi, Matteo;Golea, Lucia Roxana
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1293-1306
    • /
    • 2009
  • In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships.

A Study on the Enhancement of Accuracy of Network Analysis Applications in Energy Management Systems (계통운영시스템 계통해석 프로그램 정확도 향상에 관한 연구)

  • Cho, Yoon-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.88-96
    • /
    • 2015
  • This paper describes a new method for enhancing the accuracy of network analysis applications in energy management systems. Topology processing, state estimation, power flow analysis, and contingency analysis play a key factor in the stable and reliable operation of power systems. In this respect, the aim of topology processing is to provide the electrical buses and the electrical islands with the actual state of the power system as input data. The results of topology processing is used to input of other applications. New method, which includes the topology error analysis based on inconsistency check, coherency check, bus mismatch check, and outaged device check is proposed to enhance the accuracy of network analysis. The proposed methodology is conducted by energy management systems and the Korean power systems have been utilized for the test systems.

Restoration of Distribution System with Distributed Energy Resources using Level-based Candidate Search

  • Kim, Dong-Eok;Cho, Namhun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.637-647
    • /
    • 2018
  • In this paper, we propose a method to search candidates of network reconfiguration to restore distribution system with distributed energy resources using a level-based tree search algorithm. First, we introduce a method of expressing distribution network with distributed energy resources for fault restoration, and to represent the distribution network into a simplified graph. Second, we explain the tree search algorithm, and introduce a method of performing the tree search on the basis of search levels, which we call a level-based tree search in this paper. Then, we propose a candidate search method for fault restoration, and explain it using an example. Finally, we verify the proposed method using computer simulations.

Energy Aware Routing Protocol over Wireless Sensor Network (센서 네트워크에서 에너지 보유량을 고려한 라우팅 프로토콜)

  • Choi, Hae-Won;Yoo, Kee-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.2
    • /
    • pp.28-34
    • /
    • 2008
  • This paper reports the problem in the previous routing protocol, EAR, and proposes an energy aware routing protocol to solve the problem in it. Proposed routing protocol considers the number of hops, the possibility of node exhaustion, and the node energy amount at the same time from the source to the sink. Thereby, it could efficiently solve the potential network separation problem and the sensing hole problem in EAR. Proposed routing protocol could remove the problems in the previous routing protocols but it still gets the advantages in them.

  • PDF

Achievable Rate Region Bounds and Resource Allocation for Wireless Powered Two Way Relay Networks

  • Di, Xiaofei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.565-581
    • /
    • 2019
  • This paper investigates the wireless powered two way relay network (WPTWRN), where two single-antenna users and one single-antenna relay firstly harvest energy from signals emitted by a multi-antenna power beacon (PB) and then two users exchange information with the help of the relay by using their harvested energies. In order to improve the energy transfer efficiency, energy beamforming at the PB is deployed. For such a network, to explore the performance limit of the presented WPTWRN, an optimization problem is formulated to obtain the achievable rate region bounds by jointly optimizing the time allocation and energy beamforming design. As the optimization problem is non-convex, it is first transformed to be a convex problem by using variable substitutions and semidefinite relaxation (SDR) and then solve it efficiently. It is proved that the proposed method achieves the global optimum. Simulation results show that the achievable rate region of the presented WPTWRN architecture outperforms that of wireless powered one way relay network architecture. Results also show that the relay location has significant impact on achievable rate region of the WPTWRN.

Lost gamma source detection algorithm based on convolutional neural network

  • Fathi, Atefeh;Masoudi, S. Farhad
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3764-3771
    • /
    • 2021
  • Based on the convolutional neural network (CNN), a novel technique is investigated for lost gamma source detection in a room. The CNN is trained with the result of a GEANT4 simulation containing a gamma source inside a meshed room. The dataset for the training process is the deposited energy in the meshes of different n-step paths. The neural network is optimized with parameters such as the number of input data and path length. Based on the proposed method, the place of the gamma source can be recognized with reasonable accuracy without human intervention. The results show that only by 5 measurements of the energy deposited in a 5-step path, (5 sequential points 50 cm apart within 1600 meshes), the gamma source location can be estimated with 94% accuracy. Also, the method is tested for the room geometry containing the interior walls. The results show 90% accuracy with the energy deposition measurement in the meshes of a 5-step path.