• Title/Summary/Keyword: Network congestion control

Search Result 483, Processing Time 0.034 seconds

CAMR: Congestion-Aware Multi-Path Routing Protocol for Wireless Mesh Networks

  • Jang, Seowoo;Kang, Seok-Gu;Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.411-419
    • /
    • 2017
  • The Wireless Mesh Network (WMN) is a multi-hop wireless network consisting of mesh routers and clients, where the mesh routers have minimal mobility and form the backbone. The WMN is primarily designed to access outer network to mesh clients through backhaul gateways. As traffic converges on the gateways, traffic hotspots are likely to form in the neighborhood of the gateways. In this paper, we propose Congestion Aware Multi-path Routing (CAMR) protocol to tackle this problem. Upon congestion, CAMR divides the clients under a mesh STA into two groups and returns a different path for each group. The CAMR protocol triggers multi-path routing in such a manner that the packet reordering problem is avoided. Through simulations, we show that CAMR improves the performance of the WMN in terms of throughput, delay and packet drop ratio.

Cross-Layer Resource Allocation in Multi-interface Multi-channel Wireless Multi-hop Networks

  • Feng, Wei;Feng, Suili;Zhang, Yongzhong;Xia, Xiaowei
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.960-967
    • /
    • 2014
  • In this paper, an analytical framework is proposed for the optimization of network performance through joint congestion control, channel allocation, rate allocation, power control, scheduling, and routing with the consideration of fairness in multi-channel wireless multihop networks. More specifically, the framework models the network by a generalized network utility maximization (NUM) problem under an elastic link data rate and power constraints. Using the dual decomposition technique, the NUM problem is decomposed into four subproblems - flow control; next-hop routing; rate allocation and scheduling; power control; and channel allocation - and finally solved by a low-complexity distributed method. Simulation results show that the proposed distributed algorithm significantly improves the network throughput and energy efficiency compared with previous algorithms.

On Fair Window Control For TCP With ECN Using Congestion Pricing

  • Hai Ngo Dong;Phan Vu Ngoc
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.189-192
    • /
    • 2004
  • This paper focuses on a TCP window-based flow control mechanism with Explicit Congestion Notification (ECN). We investigate the fundamental problem of achieving a fair window control for TCP, which cooperates with ECN. This is done by using feedback congestion pricing as a means of estimating the state of bottleneck router. The problem is solved by achieving network optimal performance, which maximize the total user utilities. We then look at the simulation of such scheme.

  • PDF

Delay-based Rate Control for Multimedia Streaming in the Internet (인터넷에서 멀티미디어 스트리밍을 위한 지연 시간 기반 전송률 제어)

  • Song Yong-Hon;Kim Nam-Yun;Lee Bong-Gyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.829-837
    • /
    • 2006
  • Due to the internet network congestion, packets may be dropped or delayed at routers. This phenomenon degrades the quality of streaming applications that require high QoS requirements. The proposed algorithm in this paper, called DBRC(Delay-Based Rate Control), tries to cause router queue occupancy to reach a steady state or equilibrium by throttling the transmission rate of the multimedia traffics when network delays tend to increase and also probing for more bandwidth when network delays tend to decrease. Simulation results show that the proposed algorithm provides smooth transmission rate, nearly constant delay and low packet loss rates, compared with TFRC(TCP Friendly Rate Control) that is one of dominant multimedia congestion control algorithms.

A Novel Congestion Control Algorithm for Large BDP Networks with Wireless Links

  • Le, Tuan-Anh;Hong, Choong Seon
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.1482-1484
    • /
    • 2010
  • A new TCP protocol can succeed for large bandwidth delay product when it meets network bandwidth utilization efficiency and fair sharing. We introduce a novel congestion control algorithm which employs queueing delay information in order to calculate the amount of congestion window increment in increase phase, and reduces congestion window to optimal estimated bound as packet loss occurs. Combination of such methods guarantees that the proposal utilizes fully network bandwidth, recovers quickly from packet loss in wireless link, and preserves fairness for competing flows mixed short RTT and long RTT. Our simulations show that features of the proposed TCP meet the desired requirements.

NetDraino: Saving Network Resources via Selective Packet Drops

  • Lee, Jin-Kuk;Shin, Kang-G.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-55
    • /
    • 2007
  • Contemporary end-servers and network-routers rely on traffic shaping to deal with server overload and network congestion. Although such traffic shaping provides a means to mitigate the effects of server overload and network congestion, the lack of cooperation between end-servers and network-routers results in waste of network resources. To remedy this problem, we design, implement, and evaluate NetDraino, a novel mechanism that extends the existing queue-management schemes at routers to exploit the link congestion information at downstream end-servers. Specifically, NetDraino distributes the servers' traffic-shaping rules to the congested routers. The routers can then selectively discard those packets-as early as possible-that overloaded downstream servers will eventually drop, thus saving network resources for forwarding in-transit packets destined for non-overloaded servers. The functionality necessary for servers to distribute these filtering rules to routers is implemented within the Linux iptables and iproute2 architectures. Both of our simulation and experimentation results show that NetDraino significantly improves the overall network throughput with minimal overhead.

A Window-Based Congestion Control Algorithm for Wireless TCP in Heterogeneous Networks

  • Byun, Hee-Jung;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.474-479
    • /
    • 2004
  • This paper describes a feedback-based congestion control algorithm to improve TCP performance over wireless network. In this paper, we adjust the packet marking probability at the router for Max-Min fair sharing of the bandwidth and full utilization of the link. Using the successive ECN (Explicit Congestion Notification), the proposed algorithm regulates the window size to avoid the congestion and sees the packet loss only due to the wireless link error. Based on the asymptotic analysis, it is shown that the proposed algorithm guarantees the QoS of the wireless TCP. The effectiveness of the proposed algorithm is demonstrated by simulations.

  • PDF

The energy efficient traffic control mechanism in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율적인 트래픽 제어 메커니즘)

  • Jang, Yong-Jae;Park, Kyung-Yuk;Lee, Sung-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2257-2264
    • /
    • 2011
  • Sensor nodes in Wireless sensor network have limited resources and consume almost all energy to the communication. For its traffic feature as a burst traffic type toward a sink node, it has high probability to network congestion. Network congestion causes packet drops and retransmission of dropped packets draws energy consumption. In particular, the loss of packet that is from the sensor node far away from a sink node requires additional energy consumption by frequent retransmission. This paper presents a traffic control mechanism that determines packet transfer by considering priority of packet and congestion level as well as hop count. Analysis of proposed mechanism by simulation demonstrated that it improved energy efficiency.

TCP Congestion Control Algorithm using TimeStamp (TimeStamp를 이용한 TCP 혼잡제어 알고리즘)

  • 김노환
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.3
    • /
    • pp.126-131
    • /
    • 2000
  • Through many users employ TCP of which the performance has been proved in Internet, but many papers Proposed to improve TCP performance according to varying network architecture. In Particular, BWDP(bandwidth-delay Product) grew larger because of the increasing delay in satellite link and the network's speed-up. To consider these increased bandwidth-delay product, it is suggested that TCP options include Window Scale option. TimeStamp option, and PAWS. Because TCP window size should be commonly high in the network with these increased bandwidth-delay product, the multiple decrease and linear increase scheme of current TCP would cause underflow and instability within network. Then TCP performance is reduced as a result. Thus, to improve TCP congestion control algorithm in the network which has large sized window, this paper proposes the congestion control scheme that controls window size by using TimeStamp option.

  • PDF

A Study on TCP-friendly Congestion Control Scheme using Hybrid Approach for Multimedia Streaming in the Internet (인터넷에서 멀티미디어 스트리밍을 위한 하이브리드형 TCP-friendly 혼잡제어기법에 관한 연구)

  • 조정현;나인호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.837-840
    • /
    • 2003
  • Recently the multimedia streaming traffic such as digital audio and video in the Internet has increased tremendously. Unlike TCP, the UDP protocol, which has been used to transmit streaming traffic through the Internet, does not apply any congestion control mechanism to regulate the data flow through the shared network. If this trend is let go unchecked, these traffic will effect the performance of TCP, which is used to transport data traffic, and may lead to congestion collapse of the Internet. To avoid any adverse effort on the current Internet functionality, A study on a new protocol of modification or addition of some functionality to existing transport protocol for transmitting streaming traffic in the Internet is needed. TCP-frienly congestion control mechanism is classified with window-based congestion control scheme and rate-based congestion control scheme. In this paper, we propose an algorithm for improving the transmitting rate on a hybrid TCP-friendly congestion control scheme combined with widow-based and rate-based congestion control for multimedia streaming in the internet.

  • PDF