• Title/Summary/Keyword: Network congestion control

Search Result 481, Processing Time 0.027 seconds

TCP-GT: A New Approach to Congestion Control Based on Goodput and Throughput

  • Jung, Hyung-Soo;Kim, Shin-Gyu;Yeom, Heon-Young;Kang, Soo-Yong
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.499-509
    • /
    • 2010
  • A plethora of transmission control protocol (TCP) congestion control algorithms have been devoted to achieving the ultimate goal of high link utilization and fair bandwidth sharing in high bandwidth-delay product (HBDP) networks. We present a new insight into the TCP congestion control problem; in particular an end-to-end delay-based approach for an HBDP network. Our main focus is to design an end-to-end mechanism that can achieve the goal without the assistance of any network feedback. Without a router's aid in notifying the network load factor of a bottleneck link, we utilize goodput and throughput values in order to estimate the load factor. The obtained load factor affects the congestion window adjustment. The new protocol, which is called TCP-goodput and throughput (GT), adopts the carefully designed inversely-proportional increase multiplicative decrease window control policy. Our protocol is stable and efficient regardless of the link capacity, the number of flows, and the round-trip delay. Simulation results show that TCP-GT achieves high utilization, good fairness, small standing queue size, and no packet loss in an HBDP environment.

An LMI Approach to Robust Congestion Control of ATM Networks

  • Lin Jun;Xie Lihua;Zhang Huanshui
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • In this paper, ATM network congestion control with explicit rate feedback is considered. In ATM networks, delays commonly appear in data transmission and have to be considered in congestion control design. In this paper, a bounded single round delay on the return path is considered. Our objective is to design an explicit rate feedback control that achieves a robust optimal $H_2$ performance regardless of the bounded time-varying delays. An optimization approach in terms of linear matrix inequalities (LMIs) is given. Saturation in source rate and queue buffer is also taken into consideration in the proposed design. Simulations for the cases of single source and multiple sources are presented to demonstrate the effectiveness of the design.

Fair Packet Discarding for Improving Performance of TCP Traffic in UBR Service (UBR 서비스상의 TCP 트래픽 성능향상을 위한 Cell Discarding 방법)

  • 박근호;양형규;이병호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.221-224
    • /
    • 2000
  • The issue of supporting TCP traffic over ATM networks is currently one of the most important issues in the field of data networks. One important part of this issue is congestion control. In general, congestion control uses method such as packet drop to relieve network resource when the network is congested so as to maintain high throughput and low delay. In addition, congestion control is required to ensure fair sharing of resources among all users during congestion. In this paper we propose a new congestion control method using WRED & per-VC accounting mechanism. This packet discard scheme is proposed with the goal to provide both good performance in terms of throughput and fairness in terms of bandwidth exploitation of the output link among all virtual circuits.

  • PDF

TCP Congestion and Flow Control Algorithm using a Network Model (네트워크 모델을 이용한 전송제어 프로토콜(TCP))

  • 유영일;이채우
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.4
    • /
    • pp.35-44
    • /
    • 2004
  • Recently announced TCP Vegas predicts the degree of congestion in the network and then control the congestion window size. Thus it shows better performance than TCP Reno. however, TCP vegas does not assume any network model, its congestion window control is very limited. Because or this limitation, TCP vegas still can not adapt to fast changing available bandwidth. In this paper, we introduce a new TCP algorithm which adapts to fast changing available bandwidth well. To devise such a TCP, we model the end to end network of TCP connection as a queueing system and finds congestion window size which can utilize the available bandwidth sufficiently but not make the network congested. The simulation results show that our algorithm adapts to the avaliable bandwidth faster than TCP vegas and as a results, when the available bandwidth is changing rapidly, our algorithm not only operates more stably than TCP Vegas, but also it shows higher thruput than TCP Vegas.

Window-based Congestion Control for Wireless TCP

  • Byun, Hee-Jung;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2405-2407
    • /
    • 2003
  • We propose a feedback-based congestion control algorithm for the wireless TCP network. In this paper, we present a new TCP protocol to control the congestion window size. In particular, the asymptotic analysis of the wireless TCP is presented. Through simulations, our algorithm shows an improvement of TCP’s performance in wireless networks.

  • PDF

Congestion Control to Improve QoS with TCP Traffic (TCP트래픽에 대한 QoS를 향상시키기 위한 폭주제어)

  • 양진영;이팔진;김종화
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.21-24
    • /
    • 2000
  • End-to-end congestion control mechanism have been critical to the robustness and stability of the Internet. Most of today's Internet traffic is TCP, and we expect this to remain so in the future. TCP/IP is the intermediate transport layer candidate for today's applications. TCP uses an adaptive window-based flow control. The congestion avoidance and control algorithms deployed by TCP aims at using the available network bandwidth. This paper compares different congestion control policies, and proposes the new design mechanism for future public networks

  • PDF

LSP Congestion Control methods in ATM based MPLS on BcN

  • Kim Chul soo;Park Na jung;Ahn Gwi im;Lee Jung tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.241-249
    • /
    • 2005
  • ATM based MPLS(Multiprotocol Label Switching) is discussed for its provisioning QOS commitment capabilities, Traffic engineering and smooth migration for BcN in Korea. At this time, due to the comprehensive nature of ATM protocol, ATM has been adapted as the backbone system for carrying Internet traffic[1,2,3,4]. This paper presents preventive congestion control mechanisms for detecting HTR(Hard-To-Reach) LSP(Label Switched Path) in ATM based MPLS systems. In particular, we have introduced a HTR LSP detection method using network signaling information in an ATM layer. MPLS related studies can cover LSP failures in a physical layer fault, it can not impact network congestion status. Here we will present the research results for introducing HTR LSP detection methods and control mechanisms and this mechanism can be implementing as SOC for high speed processing a packet header. We concluded that it showed faster congestion avoidance abilities with a more reduced system load and maximized the efficiency of network resources by restricting ineffective machine attempts.

An Enhanced Transmission Mechanism for Supporting Quality of Service in Wireless Multimedia Sensor Networks

  • Cho, DongOk;Koh, JinGwang;Lee, SungKeun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.65-73
    • /
    • 2017
  • Congestion occurring at wireless sensor networks(WSNs) causes packet delay and packet drop, which directly affects overall QoS(Quality of Service) parameters of network. Network congestion is critical when important data is to be transmitted through network. Thus, it is significantly important to effectively control the congestion. In this paper, new mechanism to guarantee reliable transmission for the important data is proposed by considering the importance of packet, configuring packet priority and utilizing the settings in routing process. Using this mechanism, network condition can be maintained without congestion in a way of making packet routed through various routes. Additionally, congestion control using packet service time, packet inter-arrival time and buffer utilization enables to reduce packet delay and prevent packet drop. Performance for the proposed mechanism was evaluated by simulation. The simulation results indicate that the proposed mechanism results to reduction of packet delay and produces positive influence in terms of packet loss rate and network lifetime. It implies that the proposed mechanism contributes to maintaining the network condition to be efficient.

TCP Delayed Window Update Mechanism for Fighting the Bufferbloat

  • Wang, Min;Yuan, Lingyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4977-4996
    • /
    • 2016
  • The existence of excessively large and too filled network buffers, known as bufferbloat, has recently gained attention as a major performance problem for delay-sensitive applications. Researchers have made three types of suggestions to solve the bufferbloat problem. One is End to End (E2E) congestion control, second is deployment of Active Queue Management (AQM) techniques and third is the combination of above two. However, these solutions either seem impractical or could not obtain good bandwidth utilization. In this paper, we propose a Transmission Control Protocol(TCP)delayed window update mechanism which uses a congestion detection approach to predict the congestion level of networks. When detecting the network congestion is coming, a delayed window update control strategy is adopted to maintain good protocol performance. If the network is non-congested, the mechanism stops work and congestion window is updated based on the original protocol. The simulation experiments are conducted on both high bandwidth and long delay scenario and low bandwidth and short delay scenario. Experiment results show that TCP delayed window update mechanism can effectively improve the performance of the original protocol, decreasing packet losses and queuing delay while guaranteeing transmission efficiency of the whole network. In addition, it can perform good fairness and TCP friendliness.

Weight-based Congestion Control Algorithms for H.264/SVC Streaming (H.264/SVC 스트리밍을 위한 가중치 기반 혼잡 제어 알고리즘)

  • Kim, Nam-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.9-17
    • /
    • 2012
  • Because best-effort Internet provides no guarantees on packet delay and loss, transient network congestion may cause negative effects on H.264/SVC streaming. Thus, the congestion control is required to adjust bit rate by dropping enhancement layers of H.264/SVC streams. This paper differentiates the video streams according to different levels of importance and proposes weighted-based congestion control algorithms to use the rate-distortion characteristics of streams. To maximize the weighted sum of PSNR values of all streams on a bandwidth-constrained node, this paper proposes WNS(Weighted Near-Sighted) and WFS(Weighted Far-Sighted) algorithms to control the number of enhancement layers of streams. Through simulation, this paper shows that weighted-based congestion control algorithm can efficiently adapt streams to network conditions and analyzes the characteristics of congestion control algorithms.