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TCP-GT: A New Approach to Congestion Control
Based on Goodput and Throughput

Hyungsoo Jung, Shin-Gyu Kim, Heon Young Yeom, and Sooyong Kang

Abstract: A plethora of transmission control protocol (TCP) con-
gestion control algorithms have been devoted to achieving the ul-
timate goal of high link utilization and fair bandwidth sharing
in high bandwidth-delay product (HBDP) networks. We present
a new insight into the TCP congestion contrel problem; in par-
ticular an end-to-end delay-based approach for an HBDP net-
work. Our main focus is to design an end-to-end mechanism that
can achieve the goal without the assistance of any network feed-
back. Without a router’s aid in notifying the network load factor
of a bottleneck link, we utilize goodput and throughput values in
order to estimate the load factor. The obtained load factor affects
the congestion window adjustment, The new protocol, which is
called TCP-goodput and throughput (GT), adopts the carefully de-
signed inversely-proportional increase multiplicative decrease win-
dow control policy. Our protocol is stable and efficient regardless
of the link capacity, the number of flows, and the round-trip de-
lay. Simulation results show that TCP-GT achieves high utilization,
good fairness, small standing queue size, and no packet loss in an
HBDP environment.

Index Terms: Congestion control, high bandwidth-delay product
networks (HBDP), protocol design.

L. INTRODUCTION

Congestion control is the most fundamental issue to resolve
in order to utilize a bottleneck link efficiently and share the link
fairly. As current network technology endows the Internet with
a large number of high bandwidth-delay product (HBDP) net-
works, solving the congestion control problem becomes a mat-
ter of utmost importance because the additive increase mul-
tiplicative decrease (AIMD) [1] congestion control algorithm
adopted by transmission control protocol (TCP) [2] is known
to be uneconomical in achieving high link utilization in HBDP
networks.

The TCP’s defect of underutilizing an HBDP network has set
a new research avenue for the network community. With var-
ious algorithmic techniques, many research efforts have sug-
gested different protocols for this problem, each of which has
merits and drawbacks. We can classify these protocols into two
categories: End-to-end and router-supported approaches. End-
to-end congestion control algorithms such as HighSpeed TCP
(HSTCP) [3], FAST [4], binary increase congestion control
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(BIC) [5], and CUBIC [6] can be attractive solutions since they
do not require any support from routers, and this results in a
lesser deployment problem. However, in HBDP networks, using
the loss of segments and/or the variation in packet delay as the
only congestion signal sets fundamental limitations in achieving
high utilization and fairness while maintaining low bottleneck
queue length and minimizing congestion induced packet drop
rate.

To overcome the shortcomings of end-to-end congestion pro-
tocols, many researchers have approached the issue with dif-
ferent viewpoints, some of which propose the use of network
feedback. Explicit control protocol (XCP) [7] tackles this prob-
lem by measuring a congestion level at the bottleneck to cal-
culate a desired flow rate; routers inform the senders about the
degree of congestion at the bottleneck. As a result, XCP can
achieve high utilization, good fairness, small queue size, and
almost no packet drop in HBDP networks. To lessen the deploy-
ment problem of XCP, which requires several bytes to encode
the congestion-related information between routers and end-
hosts, variable-structure congestion control protocol (VCP) [8]
attempts to achieve XCP’s performance by using only the two
explicit congestion notification (ECN) bits to encode the conges-
tion feedback. But, it sacrifices the speed of convergence to fair-
ness nontrivially. This has been improved further by the recent
work [9]. In summary, the most obvious problem of these pro-
tocols is deployment; routers should perform intelligent work.

In this paper, we propose TCP-goodput and throughput (GT),
an end-to-end delay-based congestion control protocol with high
utilization, good fairness, small queue size, and almost no
packet drop in HBDP networks. The crucial characteristic of
TCP-GT is using a load factor, which is proposed as a conges-
tion signal in [10]. In router-supported protocols, routers usu-
ally compute the load factor and use it to identify the congested
link state. However, in end-to-end protocols, obtaining an accu-
rate load factor is almost impossible without the support from
routers. We deal successfully with this problem by approximat-
ing a load factor via an end-to-end measurement scheme. A pair
of end-hosts (sender/receiver) cooperates to estimate goodput
and throughput'. The difference between goodput and through-
put gives us very useful information about the state of a con-
gested link. The difference indicates the level of congestion (or
spare bandwidth) at a bottleneck link. We denote this differ-
ence value as ¢ and compute it as follows: ¢ = goodput —
throughput. The use of a load factor estimated by an end-host
makes it possible to approach the TCP congestion problem with
a simple window control policy; this has been an essential tech-
nique in many router-supported protocois.

1Goodput is effective (or actual) throughput observed by a receiver, and
throughput is ideal (or expected) throughput anticipated by a sender.
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TCP-GT guarantees the convergence to fairness between
flows by its unique congestion control policy, i.e., the inversely-
proportional increase multiplicative decrease (IIMD) policy.
With the AIMD policy, TCP flows converge to fairness only
in the decreasing phase. Meanwhile, TCP-GT flows converge
to fairness not only in a decreasing phase, but also in an in-
creasing phase. Convergence in an increasing phase is a very
attractive feature insofar as it works well under the variety of
bandwidth conditions. Particularly, special care must be taken
in designing an IIMD policy because a large congestion win-
dow can prevent the protocol from converging fast; when we
see the following inversely-proportional increase (II) equation,
constant values of o and & could hardly solve the slow conver-
gence; Wypar = Wi +a/(Wy)F; a, k > 0. We get around this
issue by the window splitting technique: Additively splitting the
congestion window into smaller ones. Splitting windows makes
an effect of creating virtual flows that share the same conges-
tion window. When increasing the congestion window, we use
the aggregate increment from all split windows instead of using
the very small increment from a large window. In an increasing
phase, this makes the congestion window of a TCP-GT flow be-
have like a quadratic equation, and it enhances the convergence
speed of TCP-GT. TCP-GT handles the round trip time (RTT)
unfairness? moderately by devising the RTT compensation tech-
nique. Flows with different RTTs can converge to fairness inas-
much as all IIMD equations are compensated properly. The last
point we should address is that the use of a load factor as a con-
gestion signal differentiates TCP-GT from existing drop-based
end-to-end protocols, and this makes TCP-GT hard to be com-
patible with drop-based protocols.

Using extensive ns-2 simulations, we show that TCP-GT
achieves high utilization, good fairness, low persistent queue
size, and no packet loss regardless of bottleneck capacity, round-
trip delay, and the number of flows. We also demonstrate that

TCP-GT converges to fairness with heterogeneous RTTs, and
TCP-GT adapts smoothly to a sudden increase and quickly to a
sudden decrease in traffic. The surprising result is that TCP-GT
never dropped any packets in our simulations. To the best of our
knowledge, TCP-GT is the only end-to-end protocol exhibiting
almost no packet drop.

The rest of the paper is organized as follows: We review re-
lated work in Section II. In Section III, we provide a detailed
description of TCP-GT. In Section IV, we evaluate the perfor-
mance of TCP-GT using extensive simulations. In Section V,
we present future work and the conclusion.

II. RELATED WORK

Network-supported congestion control schemes like XCP,
VCP, and coupling logistic TCP (CLTCP) [11] show excel-
lent performance and efficient convergence in HBDP networks.
TCP-GT is motivated by these protocols and built upon a num-
ber of previous research efforts in end-to-end congestion control
[4], [12]-[16]. Roughly speaking, these efforts can be divided
into two categories: Delay-based congestion control and packet
loss-based congestion control.

2Flows with different RTTs share bandwidth unfairly.
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A. Delay-Based Congestion Control

Jain first proposed delay-based congestion control in [17].
In 1994, TCP-Vegas was proposed with the claim of achiev-
ing throughput improvement ranging from 37% to 71% com-
pared with TCP-Reno [18], [19]. An innovative idea in Vegas is
that it detects congestion by observing the change of a through-
out rate and prevents packet losses proactively. TCP-GT makes
use of a mechanism similar to that in Vegas to estimate a con-
gested link state. However, there is a big difference between Ve-
gas and TCP-GT in the manner of changing the congestion win-
dow. Regardless of the degree of congestion, Vegas increases or
decreases the congestion window by a fixed size in every con-
trol interval. In contrast, TCP-GT adjusts the congestion win-
dow in proportion to a congestion level. It controls the window
in a more fine-grained way, and as a result, it achieves good fair-
ness.

Some delay-based enhancements, which include TCP-Vegas
and FAST [4], adopt a minimum RTT to detect the network con-
dition. Because RTT reflects the bottleneck queuning delay, this
mechanism is effective in determining the network congestion
status. But, the use of a minimum of all measured RTT results
in a fairness problem [20], [21]. TCP-GT addresses this problem
and is built upon the experience gained from these studies.

B. Packet Loss-Based Congestion Control

Most TCP implementations belong to this category. A packet
loss is an evident notification which indicates that the network
is highly congested and the bottleneck queue is full. The com-
mon features include slow start and fast recovery. While each
protocol has a unique policy when increasing or decreasing the
congestion window, it is based on the AIMD policy. Retain-
ing the AIMD policy guarantees TCP-friendliness. However, the
pure additive increase policy significantly degrades utilization
in HBDP networks. To improve performance in this environ-
ment, many solutions have been proposed.

HSTCP [3] extends the standard TCP by adaptively setting
the increasing/decreasing parameters according to the conges-
tion window size. HTCP {22] employs a similar control pol-
icy to HSTCP, but modifies the increase parameter based on
the elapsed time since the last congestion event. Scalable TCP
(STCP) [23] has an multiplicative increase multiplicative de-
crease (MIMD) control policy to ensure that the congestion win-
dow can be doubled in a fixed number of RTTs. BIC [5] and CU-
BIC [6] focuses on RTT fairness properties by adding a binary
search and a curve-fitting algorithm into the additive increase
and multiplicative decrease phase. Layered TCP (LTCP) [24]
modifies the LTCP flow to behave like it is a collection of vir-
tual flows, and layers congestion control.

III. THE TCP-GT PROTOCOL

In this section, we provide a detailed description of TCP-GT.
We start by explaining the design rationale of TCP-GT and de-
scribe how we materialize the protocol.
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Fig. 1. From the epoch durations T'S and TR observed at the sender and the receiver, respectively, a TCP-GT sender calculates goodput and
throughput within an epoch. Queuing delay (T'Dz and T Ds) reflects the congestion status of the bottleneck link, and a TCP-GT sender can
identify the congestion status by comparing goodput and throughput: (a) Case I, (b} case I, and {c} case Ili.

A. Design Rationale

The key design rationale of TCP-GT is to make TCP-GT a
practical end-to-end approach for HBDP networks having non-
trivial heterogeneity in link capacities and RTTs. As has been
pointed out in [7], using a packet loss as a congestion signal is
ill-suited for accurate flow control in HBDP networks. Never-
theless, most end-to-end approaches still use a packet loss as a
congestion sign. Because the binary signal (a loss or no loss) ex-
presses only two extreme states of a network link, an end-to-end
approach needs a delicate and effective beacon which can deter-
mine bottleneck status continuously.

Unlike many router-supported approaches, an end-to-end ap-
proach has a fundamental limitation in quantitatively recogniz-
ing the load status of a bottleneck link. The meaning of end-to-
end control implies that there is no way of getting link informa-
tion. We, therefore, use a goodput-throughput dynamic as a new
congestion signal. The actual sign we rely on is the difference
between goodput and throughput measured by a sender. This
value is not a binary signal, rather it indicates the link state ac-
curately by revealing the exact amount of excessive (or spare)
bandwidth. By increasing {or decreasing) a congestion window
to this exact amount, a sender can respond much more quickly
to the change in a bottleneck link, and this also allows multiple
TCP-GT flows to share the bottleneck link fairly without bulk
packet losses.

B. Measurement of Goodput and Throughput

TCP-GT measures goodput and throughput within a specific
time duration, which we call an epoch, and regulates its sending
rate by adjusting the congestion window in proportion to the dif-
ference between them. The precise measurement of goodput and
throughput is the key factor in accurate congestion control. To
get more accurate goodput and throughput values, each TCP-GT
packet carries an epoch header in the optional field of the TCP
header. The epoch header has a layout similar to the round-trip
time measurement (RTTM) {25].

Fig. 1 illustrates the details of how to measure goodput and
throughput by using epochs. When sending a packet to the des-
tination, a TCP-GT sender writes its current epoch number in the
epoch header (downward numbers in Fig. 1). Whenever a new
packet arrives at the destination, a TCP-GT receiver echoes the

epoch number of the new packet (upward numbers in Fig. 1). If
the returned epoch number is equal to its current epoch num-
ber, the TCP-GT sender initiates a new epoch by increasing
its epoch number by one. At this time, the sender records the
current timestamp and the timestamp of the acknowledgment
(ACK) packet using the RTTM technique. From these times-
tamps, the TCP-GT sender measures the duration of an epoch
observed at the sender (T°S) and the duration of an epoch ob-
served at the receiver (T'R). The TCP-GT sender can calculate
goodput (G) and throughput (T of a previous epoch

. betes

G = TR )
_ betes

T= TS @

where Npyes is the total size of packets which are transferred
from the sender to the receiver during one epoch. The length of
one epoch observed at the sender (1°5) is equal to the round-trip
time.

We want to point out that the measurement period can not be
shorter than the length of an epoch (i.e., RTT). The reason fol-
lows; the size of the congestion window can be understood as
the total transfer size during an RTT. However, packets do not
start uniformly within an RTT because packets are transferred
as a packet train, which means that they are not equidistant each
other, rather they are sent at the same time. Therefore, it does not
make sense to measure goodput and throughput between succes-
sive acks.

C. Recognizing Congestion Status of a Bottleneck Link

To identify the bottleneck congestion status, TCP-GT utilizes
the difference ¢ between goodput and throughput

¢=G-T. 3)

Fig. 1 explains the relationship between ¢ and the congestion
status. There are three situations that need to be considered.
Fig. 1(a) illustrates the case where the congestion level has been
kept at almost the same level during an epoch. In most of this
case, the congestion level is very low. In other words, through-
put is lower than the bandwidth of the bottleneck link, and as a
result the bottleneck queue is empty. In this case, the TCP-GT
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Fig. 2. Point z¢ is the start point, and point z; is the optimal point.
Goodput and throughput are equal along the equi-throughput line.

sender increases its congestion window to occupy spare band-
width. Fig. 1(b) illustrates the case when the congestion level
has been increased during an epoch. Increased queuning delay
at the bottleneck link results in an increased RTT and an in-
creased epoch duration at the destination (T'Ry =~ T'Sy + T'D5)
and throughput becomes larger than goodput (¢ < 0). To re-
lieve the congested status at the bottleneck, the TCP-GT sender
decreases its congestion window. Fig. 1(c) illustrates the case
when the congestion level has been decreased during an epoch.
Decreased queuing delay at the bottleneck link brings about a
decreased RTT and a decreased epoch duration at the destina-
tion (T'Rg =~ TS3 — T'D3). Consequently, goodput becomes
larger than throughput (¢ > 0). This phenomenon indicates that
the congestion started at the beginning of an epoch has been re-
lieved before the end of the same epoch. At the time when a
TCP-GT sender measures goodput and throughput, the bottle-
neck link might be underutilized. To ameliorate the link utiliza-
tion, the TCP-GT sender increases its congestion window.

Fig. 2 illustrates the relation between the congestion window
and RTT. A new TCP-GT flow enters into the network at ¢, and
goes toward x;. While the flow walk along the line from zg to
1, its goodput and throughput increase at the same speed, and
its RT'T remains at the lowest value (i.e., the sum of link delays).
The point z; is the optimal point where the bottleneck band-
width is fully utilized and the queue starts to build up. At the op-
timal point, the difference ¢ is almost zero (case I in Fig. 1). If a
TCP-GT sender increases its congestion window, the operating
point moves to the point x2. At point x2, throughput becomes
larger than goodput, and TCP-GT decreases its congestion win-
dow by the difference between them. We expect the operating
point to go back to z;1. But if a TCP-GT sender measures small
throughput by some errors (i.e., a large 7'S in Fig. 1), it brings
the operating point to x3 instead of z;. In this case, the operat-
ing point never goes back from x3 to ;. Because x3 is also on
the equi-throughput line, its goodput and throughput are equal,
and as a result, TCP-GT continues to increase the congestion
window. After some cycles pass, the congestion window may
eventually go beyond the sum of the pipe size and the bottle-
neck queue size. From that point, the bottleneck queue starts to

drop packets.

The primary reason for this problem comes from the equi-
throughput line. Because ¢ has the same value along the line,
TCP-GT fails to recognize the queuing delay. To remedy this
catastrophe, we introduced a minimum RTT rtty;, in the mea-
surement of throughput

— M bytes
T‘ttmin ’

C))

By replacing the epoch duration with rttmi, in (2), we now can
guarantee that the operating point of TCP-GT goes safely back
to the point z; instead of the point z3. The technique of using
rttmin Was originally introduced in [4] and [18], and it was re-
ported that the use of 7t .y, can incur a fairness problem in [15].
The main cause of the fairness problem is the disagreement on
Tttmin between flows sharing the network. If a flow joins a net-
work when the network is not congested, it has a lower RTT than
latter flows. The larger 7t a flow has, the more bandwidth it
occupies. This problem was analytically derived in [14]. To rec-
tify this challenge, TCP-GT uses a local minimum RTT instead
of global minimum RTT; TCP-GT updates its minimum RTT to
the smallest RTT within the last 10 epochs.

Tttmin = min(rtt within the last 10 epochs). (5
Unlike the global minimum RTT, the local minimum RTT in-~
creases when the network is congested. It helps all flows have

. similar minimum RTT values, and improves fairness between

flows.

D. The IIMD Equations of TCP-GT

Multiplicative decrease (MD): To relieve the congestion, a
TCP-GT sender must decrease its congestion window. The ba-
sic principle of decreasing the congestion window of a flow
1, 1.e., cwnd;, is to adjust cwnd; according to the congestion
level and its current sending rate. Because ¢; is principally af-
fected by the queuing delay, the change of a congestion level
necessitates adjusting ¢;. We change cwnd; based on ¢;; i.e.,
Acwnd; < ¢;. The change Acwnd; is the sum of per packet
changes in one epoch. We obtain the per packet negative change
n; in the congestion window of flow ¢ by dividing the change
in congestion window Acwnd; by its current congestion win-
dow cwnd,;. The difference ¢; is the amount of change in send-
ing rate and Acwnd; is the amount of change in the conges-
tion window during an epoch (or RTT). To translate ¢; into
Acwnd;, Acwnd; is multiplied with the average RTT of flow
1 and divided by the size of maximum transmission unit (MTU)
(Acwnd; = ¢;rtt; /mtu). The per packet negative change n; in
the congestion window of flow ¢ is given by

ity
T cwnd;miu’

(©)

n; is computed every epoch, and is added to the current con-
gestion window whenever an ACK packet arrives at a TCP-GT
sender. Because the size of ¢ is directly proportional to the
flow’s current sending rate, TCP-GT operates in the MD mode
in a decreasing phase.
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Fig. 3. A TCP-GT flow converges to fairness in both increasing and
decreasing phase by its IMD control policy. The IIMD policy is more
efficient than the AIMD policy.

Inversely-proportional increase (II): Under the AIMD prin-
ciple, flows converge to fairness only in a decreasing phase by
the MD policy along the equi-fairness line (Fig. 3) [1]. To im-
prove the efficiency of convergence to fairness, we want the
change in the congestion window Acwnd to be inversely pro-
portional to the sending rate (goodput), which is Acwnd Gl
Again, the translation from G; to Acwnd, is applied. The per
packet positive change p; is given by

_ miu
T Gyrttiewnd;

i )

When there are two flows i and j with cwnd; > cwnd,;, the ratio
of Qcwnd; cwnd; 1), assuming rtt; = rit;, and

Acwnd; cwnd;
this guarantees convergence to fairness in an increasing phase.
TCP-GT operates in the II mode in an increasing phase as well.

Fig. 3 shows a complete trajectory of the two-user system
starting from point zo using the aforementioned [IMD equa-
tions. This representation of the dynamics of the set of controls
was introduced by Chiu ef al. in [1]. In an increasing phase, the
point zg is below the efficiency line and both users are asked to
increase their congestion windows. Because TCP-GT increases
the congestion window inversely proportional to its congestion
window, the users move along the line that is axial symmetric
with the equi-fairness line with respect to the perpendicular line
from zy to the fairness line. This brings them to 2; that happens
to be above the efficiency line. In the decreasing phase, the users
are asked to decrease and they do so multiplicatively. This cor-
responds to moving towards the origin on the line joining z; and
the origin. This brings them to point z2, which happens to be be-
low the efficiency line and the cycle repeats. With every cycle,
the fairness increases slightly, and eventually the system con-
verges to the optimal state. There is one big difference between
AIMD and IIMD. Because IIMD’s symmetric equi-fairness line
is warped toward the fairness line, IMD converges faster than
AIMD?. IIMD goes toward the optimal point in all phases.

Notwithstanding the beauty of the II policy that it converges

.Gy
is 7 (x

31t is not always true, but TCP-GT makes it true.
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Fig. 4. The behavior of TCP-GT.

to fairness even in an increasing phase, as the congestion win-
dow becomes large, Acwnd decreases according to (7). This
leads a flow to take a long time* to fully utilize a high bandwidth
link; even worse, the convergence to fairness between flows is
severely deteriorated. We overcome these issues by two tech-
niques: The window splitting technique and aggressive probing.

The window splitting technique is splitting cwnd; additively
into small windows when ¢ > 0. When ¢ < 0, it combines all
split windows into a single one, which means that there is no
change in the MD equation. If there are s split windows, this
means that there are s split virtual flows that share the cwnd;
evenly, i.e., cwnd; /s (or G; /s since cund; « G;)

8

cwnd cwnd

. (8)
s s

These s split virtual flows affect the Acwnd; computation; each
virtual flow has the spare bandwidth G;/s and contributes its
increment miu/((G;/s)rtt;) to the Acwnd; computation, and
as a result, s flows contribute (s>mtu)/(G;rtt;). Then, the new
p; can be obtained by the following equation

#miu

P — 9
Girtt;cwnd; ©

Pi
p; 1s indeed a quadratic equation over the discretized variable
s, which is incremented by one while ¢ > 0. When we have
two flows ¢ and j, where cwnd; < cwnd;, the window splitting
technique does not change the ratio of p;/p; compared to the
one we can derive from (7). The accelerated convergence speed
to fairness is the main effect what we expect from adopting the
splitting technique.

The second technique is aggressive probing. The aggressive
probing expedites the convergence speed in a decreasing phase
as the window splitting technique does in an increasing phase.
For aggressive probing, we keep the II phase going within the
small amount of ¢; in other words, TCP-GT increases cund;
while ¢; > #T;°. Aggressive probing induces a larger bandwidth

41t is getting extremely slower than the AIMD policy as cwnd is becoming
larger.
5We set t to -0.05 (5%) in TCP-GT.
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drop, and as a consequence, leads to faster convergence, and it

creates larger spare bandwidth, which is a big margin to the II
equation. Then, we have the following equation.
(8i)*mtu .
i = —————— (if —0.057; < ¢; < 0). 10
pl Gz’rttzc’wnd, (1 1 .= ¢1 ) ( )

Fig. 4 shows the simulated trajectory of cwnd converging to
fairness with 100 Mbps bandwith and 40 ms RTT. Due to the
splitting technique, cwnd shows a quadratic behavior in an in-
creasing phase and converges to fairness efficiently in a large
cwnd environment.

E. RTT Unfairness

Over many decades of protocol development, working out the
RTT unfairness problem has always been a notorious task. The
IIMD policy of TCP-GT also has the RTT unfairness problem
because flows with different RTTs have no consensus on the
control cycle of cwnd.

The first problem lies in the computation of the splitting vari-
able s. During the period At of an increasing phase starting
from g, a flow with a longer RTT rtt; has smaller s; +,4+a+ than
84,to+At of a flow with a shorter RTT rtt;

83 A 1+ == AL
Dot Bl = T < 1 (unfair). 11)
-S4 to+At 1+ rit;

As time elapses, this leads to a big difference between p; and p;

Pi (1 + ﬁttz )2

1 (unfair).
pi (+EL2 o

12)

The second problem arises in the p; computation. A flow with
a longer RTT increases a less amount of p; even though s; and
s; are assumed to be the same, moreover p; has two unfairness
causes, i.e., rtt; and cwnd;, and this makes larger unfairness

(rtt;)?
(’I'tti)2

pi _ ritjewnd;
Dj T rttiewnd;

< 1 (unfair). (13)

The third problem comes out in the aggressive probing and n;;
a flow with a shorter RTT has a higher chance of detecting the
congestion (i.e., ¢; < —tT;). Accordingly, a longer RTT flow
detects the congestion less often and consumes more bandwidth.
If a long RTT flow lowers the threshold ¢ for the early detection
of congestion, the amount of n; is curtailed as well. When we
take a close look at n;, n; itself does not need the RTT compen-
sation because the unfairness term cancels out due to rtt/cwnd.
The change of the threshold ¢ indeed incurs the change of n;. To
remedy these coupled problems, we cut the threshold ¢ and raise
n; in a certain degree at the same time.

‘We attempt to alleviate these difficulties moderately by using
a compensation factor f;, which is the ratio of rtf; to the base-
line RTT 7ttpase. The use of the RTT compensation is also used
in [24] so as to lessen the RTT unfairness problem. Considering
the tradeoff between the convergence speed and the stability of
flows, we set rityae to 50 ms from simulations. We apply the
compensation factor fi(= rtt;/rttpase) to s;, pi, t, and n; as

Algorithm 1 Congestion control algorithm of TCP-GT

1: QOutput: p, n
2: /* Increase/reset the splitting constant */
3 if ¢ > =0T 05T then
4 s=s+ f
5: else
6 s=1;
7. endif
8: /* The IIMD algorithm */
9: if¢> ‘0'})5T then
10 p= gl
11: else
forttoase .
122 n= cwrfd%tu’
13: end if
follows
Sittret; = Sit + i, (14)
)2 (s;)2mitu
p; = Yol () mtu (15)
Girttpasecwnd;
t(= —0.05
g > E00) g (16)
fi
= ;’M a7n
cwnd;mtu

One additional effect of using the compensation factor f is that,
with the same bandwidth condition, the time to converge to fair-
ness is almost the same under a variety of RTT conditions. This
will be shown in the simulation study.

Algorithm 1 shows the congestion control algorithm of
TCP-GT. The algorithm contains all equations needed and is
very simple to implement.

IV. PERFORMANCE EVALUATION

In this section, we present extensive simulations present-
ing dynamics of TCP-GT. Every simulation uses. the dumb-
bell topology, and we choose the drop-tail policy for the bot-
tleneck queuing scheme, which is most widely used in the
real world. The bottleneck queue size is set to the amount of
bandwidth-delay product, and the bandwidth at a bottleneck link
is set to 500 Mbps. In all simulations the packet size (MTU) is
1000 bytes, and the ACK packet size is 40 bytes.

A. Convergence Speeds in Different RTT Conditions

In this experiment, two file transfer protocol (FTP) flows
share a 500 Mbps bottleneck and have a common RTT of 40
ms and 80 ms in each simulation. We configure that the first
flow starts at 0 second, and the second flow enters into the net-
work at 20 seconds. Fig. 5 shows the convergence dynamics of
two TCP-GT flows in different RTT conditions. In 40 ms RTT
condition (Fig. 5(a)), it takes 60 seconds to converge to fairness,
and in Fig. 5(b) of 80 ms RTT, the convergence time is almost
the same. This is due to the compensation factor f that attempts
to adjust the RTT unfairness effect.
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Fig. 5. TCP-GT converges to fairness at same speed regardless of RTT.
Two TCP-GT flows share a 500 Mbps bottleneck: (a) 40 ms and (b)
80 ms.

Table 1. Jain's fairness index among five TCP-GT flows.

Differences in RTT | 10 20 30 40
Jain’s index 098 | 0.92 | 0.88 | 0.86

B. Convergence Dynamics with Common RTTs

In this simulation, five long-lived flows share a 500 Mbps
bottleneck and have a common RTT of 80 ms. The flows start
their transfers 20 seconds apart at 0, 20, 40, 60, and 80 seconds.
Fig. 6(a) shows that whenever new flows come in the network,
old flows and new flows converge to fairness without affecting
its high utilization (Fig. 6(b)) or causing a large instantaneous
queue (Fig. 6(c)). When we see the utilization graph in Fig. 6(b),
all flows utilize the bottleneck link efficiently. The queue length
graph in Fig. 6(c) substantiates the arguement that the queue size
is not overshot. In this simulation, we observed no packet drop
and low persistent queue size. These unique features come from
the sensitive measurement of goodput and throughput. To the
best of our knowledge, there is no end-to-end delay-based TCP
implementation that shows the above behavior. Only XCP and
VCP, which are supported by routers, achieve this smooth con-
vergence. Fig. 6 also demonstrates that TCP-GT does not have
a problem related with the global minimum RTT. The use of
the local minimum RTT solves the problem of building up the
bottleneck queue.

C. Convergence Dynamics with Heterogeneous RTTs

We have seen the situation that TCP-GT flows share bottle-
neck bandwidth fairly inasmuch as their RTTs are not signifi-
cantly different. The convergence to fairness, however, is dete-
riorated when flows have large RTT heterogeneity. Fig. 7 shows
the case that the RTT difference is small (less than twice). In
this simulation, we set the RTT values of the five flows to differ-
ent values ranging from 40 ms to 80 ms, which are 10 ms apart.
All other parameters have the same values used in the previous
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Fig. 6. Flows converge to fairness efficiently with high utilization and
small queue size. Five TCP-GT flows share a 500Mbps bottleneck.
They start their transmission at times 0, 20, 40, 60, and 80 seconds:
(a) Throughput, (b) bottleneck utilization, and (c) bottleneck queue
size.

simulation. Fig. 7(a) shows that TCP-GT converges to fairness
between heterogeneous RTTs without affecting its high utiliza-
tion (Fig. 7(b)) or causing large instantaneous queue (Fig. 7(c)).

Table 1 shows Jain’s fairness index when five TCP-GT flows
share a bottleneck link. The RTT differences between the com-
peting flows are increased from 10 ms to 40 ms by 10 ms, and
the smallest RTT is fixed to 40 ms in all experiments. In the
case of 10 ms difference, the RTTs of five flows are 40, 50, 60,
70, and 80 ms. We note that since the congestion control algo-
rithm of TCP-GT is moderately compensated by the RTT com-
pensation factor f, the severe RTT unfairness phenomenon is
not observed in this evaluation. One thing, however, we should
note is that when flows have largely different RTTs, our pro-
tocol is susceptible to the RTT unfairness because very large
RTTs could render the [IMD equations sensitive. One conspicu-
ous thing is that unlike the traditional RTT unfairness that a flow
with a shorter RTT consumes more bandwidth than a flow with
a longer RTT, the opposite phenomenon happens in TCP-GT; a
longer RTT flow consumes more bandwidth than a shorter RTT
flow. This is because a flow with 2 long RTT usually has a less
chance to decrease its congestion window, and this elongates
the inversely proportional increase period. Another limitation to
solve the RTT unfairness is ironically the RTT compensation
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Fig. 7. TCP-GT also converges onto good fairness, high utilization, and
small queue with heterogeneous RTTs. Each five TCP-GT flows have

RTTs of 40, 50, 60, 70, and 80 ms, respectively: (a) Throughput, (b)
bottleneck utilization, and (c) bottleneck queue size.

factor itself. As an RTT grows, f also has to be large, and as

a result, f2 becomes huge enough to make our algorithm work -

unreliably due to the increased sensitivity of the large compen-
sation factor. One possible solution to this is to update cwnd
frequently enough not to have huge f.

D. Robustness to Sudden Change in Traffic Demands

We start the simulation with 10 long-lived FTP flows sharing
a 500 Mbps bottleneck with an RTT of 40 ms. Each flow’s start
time is distributed between zero and one seconds uniformly. At
t = 50 seconds, we start 100 new flows and let them stabilize. At
t = 100 seconds, we stop these 100 flows, leaving the original
10 flows in the system.

Fig. 8(a) shows that TCP-GT adapts quickly to a sudden
changes in traffic. We skip the graphs for these 100 short flows
in Fig. 8(a) since they show the same behavior as the FTP flows
do. Fig. 8(c) shows that the bottleneck queue size increases
when 100 new flows enter into the network. The number of to-
tal flows becomes 10 times larger, but the bottleneck queue size
increases less than 10 times. TCP-GT effectively prevents the
bottleneck queue from building up when there is a sudden in-
crease in traffic.
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Fig. 8. TCP-GT is robust against sudden increase or decrease in traffic
demands. Ten FTP flows share a bottleneck. Attime ¢ = 50 seconds,
we start 100 additional flows. At ¢ = 100 seconds, these 100 flows
are suddenly stopped and the original 10 flows are left to stabilize
again: {(a) Throughput, (b) bottleneck utilization, and (c) bottleneck
queue size.

E. Comparision with Other TCP Implementations

We compare TCP-GT with other end-to-end TCP implemen-
tations, which are selective ACK (SACK), HSTCP, FAST, and
CUBIC.

E.1 Impact of Capacity

In this experiment, 50 long-lived FTP flows share a bottle-
neck. The bottleneck capacity varies from 50 Mbps to 2 Gbps,
and the RTT is 80 ms. : :

As shown in Fig. 9(a), we notice that the bottleneck utilization
is higher than 90% in all participants. However, there are obvi-

'ous differences in the bottleneck queue size (Fig. 9(b)) and the

number of packet drops (Fig. 9(c)). As capacity increases, bot-
tleneck queue sizes of competitors increase significantly. In con-
trast, TCP-GT’s bottleneck queue size is significantly smaller
than others. Furthermore, TCP-GT never drops any packets,
whereas other TCP implementations drop thousands of packets.
Because TCP-GT has no buffer section in the bottleneck queue
(i.e., the gap between « and S in TCP-Vegas [18]), it never per-
mits the bottleneck queue to build up. This unique behavior is
also shown in the following experiments.



JUNG et al.: ANEW APPROACH TO CONGESTION CONTROL BASED ON...

Bottleneck utilization (%)

40 B
20 4
o . . o . : L . . .
g 200 400 600 800 1000 1200 1400 1600 1800 2000
Bottleneck capacity (Mbps}
®
g 10000 T T T T
g H000 |-
_:“ 8000 |- .
S o 7000 [ - FAS E
% 2 sl —~CUBIC -~ |
k= —é 5000
3 L
38 o
o 3000 [
é‘) 2000 -
g 1000
< o L : . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Bottleneck capacity (Mbps)
()
—~
& 700000 T T T T T T T T T
3 P TOPAGT o
2 600000 |- SACK wermen
i D e
& so0000 | P J
£ 400000 | p
E P 8
o 300000 ]
8 200000 L T
g ..
'E 100000 [
8 0 R L S b S folai o T A - W PRSI S P
0 200 400 600 800 100 1200 1400 1600 1800 2000
Bottleneck capacity (Mbps)

(©)

Fig. 9. TCP-GT and other high-speed TCP implementations achieve
high utilization with 50 FTP flows in a range of bandwidth from 50
Mbps to 2 Gbps. TCP-GT has a distinguished low queue size and
never drops packets in any simulations: (a) Throughput, (b) bottle-
neck queue size, and (c¢) bottleneck drops.

E.2 Impact of RTT

We fixed the bottleneck capacity at 500 Mbps and study the
impact of increased delay on the performance of congestion con-
trol. We vary the RTT from 20 ms to 1000 ms. All other param-
eters have the same values used in the previous experiment.

Fig. 10(a) shows that as the RTT increases, the bottle-
neck utilization decreases in all TCP implementations including
TCP-GT. TCP-GT achieves a higher utilization than other TCP
implementations regardless of the number of flows. This feature
comes from the fast convergence characteristic of TCP-GT. As
in the previous experiments, TCP-GT’s bottleneck queue size
remains at a low level (Fig. 10(b)), and it does not drop any
packets (Fig. 10(c)).

E.3 Impact of Number of Flows

We fixed the bottleneck capacity to 300 Mbps and the RTT to
80 ms. We repeat the same experiment with varying numbers of
FTP sources. Other parameters have the same values used in the
previous experiment. Fig. 11 shows that overall, TCP-GT exhib-
its high utilization (Fig. 11(a)), small queue size (Fig. 11(b)),
and no packet losses (Fig. 11(c)). The queue size of TCP-GT
does not change significantly in any cases. This behavior derives
largely from the decrease policy in such a way that each TCP-
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Fig. 10. TCP-GT and other high-speed TCP implementations achieve

high utilization with 50 FTP flows in a range of RTT from 20 ms to
1000 ms. TCP-GT exhibits the uniqueness of small queue size and
no packet loss: (a) Throughput, (b) bottleneck queue size, and (c)
bottleneck drops.

GT flow decreases the congestion window by the exact amount
that is estimated by means of the ¢ calculation.

E.4 Impact of Short Web-Like Traffic

Since a large number of flows in the Internet are short web-
like flows, it is important to investigate the impact of such dy-
namic flows on congestion control. In this experiment, we have
50 long-lived FTP flows traversing the bottleneck link. We fixed
the bottleneck capacity at 500 Mbps and the RTT at 40 ms. We
repeat the same experiment with varying the number of web ses-
sions from 50 to 1000. The number of users, inter-page arrival
time, the number of objects per page, and inter-object arrival
time were 10, 4 seconds, 10, and 0.01 seconds, respectively.
Their transfer size was derived from a Pareto distribution with
an average of 3000 bytes (ns-implementation with shape = 1.2).
Other parameters have the same values used in the previous ex-
periment.

Fig.12 shows the results. As the number of sessions exceeds
600, TCP-GT starts to drop packets (Fig. 12(c)). However,
the utilization is still kept at near 100% (Fig. 12(a)), and its
queue size is at lowest level among all competitors (Fig. 12(b)).
Though the web traffics create a severe fiuctuation in the mea-
surement of goodput and throughput, TCP-GT’s window split-



508
S 100
é/ TCPGT +——
g SACK ---x---
g | L1 e
= CUBIC —-m-—
g of 4
|
g e) E
]
8
B s L _ . . . L .
[ 50 100 150 200 250 300 350
- Number of FTP flows
@
% 1600 : T T T T
wo -
) R G
a0 1200F W e
PRV ¥
S @ 1000
% A goo - J
3 7
288 0| g
E" wofr g
5 w0} * 4
z o n . . . . n
0 50 100 150 200 250 300 350
Number of FTP flows
%? 1.6e+06 .
g 14e406 | B
<
& 12es06 F E
§ 1e+06
_s 800000 E
% 600000 - - ]
%, 400000 [ o E
= 200000 | E
a 0 . N T s twiteits 1
0 50 100 150 200 250 300 350

Number of FTP flows
©

Fig. 11. TCP-GT and other high-speed TCP implementations achieve

high utilization as the number of flows increases. With small number
of flows, TCP-GT shows best utilization. In all simulations, TCP-GT
never drops a packet: (a) Throughput, (b) bottleneck queue size,
and (c) bottieneck drops.

ting technique and aggresive probing help to keep high utiliza-
tion in this situation.

F. Limitations and Discussion of TCP-GT

Unstable behavior: Throughout the extensive experimenta-
tions, we realized that TCP-GT showed unstable behaviors un-
der the circumstance that the bottleneck capacity is less than 50
Mbps, or an RTT is less than 20 ms. The reason of this unsta-
ble behavior can be found in the per-packet positive feedback
(9). Because the per-packet positive feedback is inversely pro-
portional to goodput (G) and RTT (rtt), the size of the feedback
becomes larger as bandwidth of a bottleneck link and RTT get
lower. In this environment, TCP-GT overshoots and drops many
packets. L

TCP-GT is affected by the accuracy of measured RTT val-
ues. If there are some errors in the RTT measurement, TCP-GT
outputs wrong p and n value. However, this problem becomes
serious only when the error keeps occurring in the RTT mea-
surement. If the measurement error occurs rarely, the unintended
misbehavior will be quickly recovered by subsequent correct
control. Indeed, the method of measuring RTT is simple and
straightforward, and an error occurs very rarely with a small de-
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12. TCP-GT and all other participants achieve high utilization with
web-like flows. The number of web sessions varies from 50 to 1000.
As the number of web sessions goes beyond 600, TCP-GT also
starts to drop packets. But, TCP-GT always drops fewer packets
than other protocols do: (a)- Throughput, (b) bottleneck queue size,
and (c) bottieneck drops.

Fig.

viation. Based on our experience and observations, rarely hap-
pening errors in measured factors are not a serious matter in
TCP-GT.

TCP-unfriendliness: TCP-GT is a delay-based protocol that
is known not to be compatible with packet loss-based protocols
because packet loss-based protocols usually increase the con-
gestion window until they detect any packet drop. While loss-
based protocols increase the window, TCP-GT keeps decreasing
its congestion window since in most cases ¢ would be negative.

Measuring a local minimum RTT: We use a local minimum
RTT to resolve the fairness problem of TCP-GT. Our choice
is totally based on extensive simulations (empirical study) like
what we can see in [26] and [27]. Instead of 10 epochs, 9 or
11 epochs can be used for this purpose as well. Our choice is
a tradeoff between response time and stability. If we choose
longer epochs, TCP-GT reacts slowly to the change of the num-
ber of competing flows or network conditions. In contrast, if we
set shorter epochs, TCP-GT surely shows an unstable behavior
as was addressed previously.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose TCP-GT, a delay-based end-to-end
protocol. Motivated by XCP and TCP-Vegas, we choose the dif-
ference between goodput and throughput as a degree of conges-
tion in the network. We show that TCP-GT converges to fairness
efficiently. The window splitting technique and aggressive prob-
ing improve convergence to fairness, and the RTT compensation
mitigates the RTT unfairness moderately. The RTT compensa-
tion factor might be unreliable because flows with largely dif-
ferent RTTs could make the IIMD equations very sensitive. We
are currently working on this issue further along with the TCP-
friendliness issue. Because TCP-GT is a delay-sensitive conges-
tion control protocol, it is not able to work properly with other
loss-based protocols. Whenever there are flows which use loss-
based protocols, flows using TCP-GT always yield bandwidth
to other flows.
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