• Title/Summary/Keyword: Network communication area

Search Result 1,318, Processing Time 0.027 seconds

A Design and Implementation of Wi-Fi Based Unmanned Ship Control System (무선랜 기반 무인선박 제어시스템 설계 및 구현)

  • Kim, Dong-Hyun;Lee, Chae-Seok;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.437-444
    • /
    • 2014
  • The unmanned ship control system controls the unmanned ship at a distance in ocean. Expecially, in order to control the unmanned ship, it needs the wireless communication networks and we use the IEEE 802.11 based WLAN. The IEEE 802.11 based WLAN technology for supporting a wide bandwidth is suitable for unmanned ship control system which has to transmit the multimedia data. First, we design the system structure for controlling the unmanned ship. Then, in order to overcome the limited communication area, we design the network structure for the unmanned ship communication network which can use a various communication network. we implemented and evaluated the unmanned ship system based on WLAN. We controlled the unmanned ship by use the WLAN and confirmed the signal feature of WLAN in the ocean.

The Design and Implementation of User Authorization Module based on Zigbee for Automotive Smart-key System (차량용 스마트키 시스템을 위한 지그비 기반의 사용자 인증 모듈 설계 및 구현)

  • Kim, Kyeong-Seob;Lee, Yun-Seob;Yun, Hyun-Min;Choi, Sang-Bang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2442-2450
    • /
    • 2010
  • Using sensor devices applied to various objects will be needed wireless network that it is easy to install in them. Tiny devices configured to processor that bas comparatively low computing ability are inappropriate to use devices that are wireless LAN, etc. In result, network devices needed to not only have simple communication protocol, but have Plug and Play function that it works as soon as it connects without installing any device driver. it also will industrially have both low power and low cost because of mobility of it. From IEEE 802.11 standard, WPAN(Wireless Personal Area Network) included in LAN is being developed by WPAN WG(Working Group) on area with low power consumption and low complexity. In addition to, it is standardizing MAC and PRY of the standard that is expected to wirelessly communicate within 10m. WPAN will be used generally in the more near future because of both low power and low cost of Zigbee. In this paper we designed zigbee based user authentication module for a automotive smart-key system.

Performance Evaluations of the Computer Networks for the Voice/Data Coexisted Network Design (음성/데이터 통합망 설계를 위한 이행 단계별 성능평가)

  • Eom, Ki-Bok;Yoe, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.678-683
    • /
    • 2003
  • This study presents a result of performance with the design of network topology for voice and data integration under computer network. This network is consisted of FastEthernet, other LANs and ATM WAN(wide area network), and performance evaluation of delay in a PBX+IP network, delay in a VoIP network and delay in a IP+ATM network will be shown. We use parameters including network bandwidth, number of packet, routing protocol(IGRP, OSPF). We simulate integrated of voice and data used PBX. we will study further about the case of integrated of voice and data environments using PBX. and, evaluate IP+ATM WAN average measured network delay and average delay of VoIP network.

GEOP : A Security Aware Multipath Routing Protocol (GEOP : 보안 인식 다중경로 라우팅 프로토콜)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.151-157
    • /
    • 2010
  • Rapid technological advances in the area of micro electro-mechanical systems (MEMS) have spurred the development of small inexpensive sensors capable of intelligent sensing. A significant amount of research has been done in the area of connecting large numbers of these sensors to create robust and scalable Wireless Sensor Networks (WSNs). The resource scarcity, ad-hoc deployment, and immense scale of WSNs make secure communication a particularly challenging problem. Since the primary consideration for sensor networks is energy efficiency, security schemes must balance their security features against the communication and computational overhead required to implement them. In this paper, we combine location information and probability to create a new security aware multipath geographic routing protocol. The implemented result in network simulator (ns-2) showed that our protocol has a better performance under attacks.

Link Quality Enhancement with Beamforming Using Kalman-based Motion Tracking for Maritime Communication

  • Kyeongjea Lee;Joo-Hyun Jo;Sungyoon Cho;Kiwon Kwon;Dong Ku Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1659-1674
    • /
    • 2024
  • Conventional maritime communication struggles to provide high data rate services for Internet of Things (IoT) devices due to the variability of maritime environments, making it challenging to ensure consistent connectivity for onboard sensors and devices. To resolve this, we perform mathematical modeling of the maritime channel and compare it with real measurement data. Through the modeled channel, we verify the received beam gain at buoys on the ocean surface. Additionally, leveraging the modeled wave motions, we estimate future angles of the buoy to use the Extended Kalman Filter (EKF) for design beamforming strategies that adapt to the evolving maritime environment over time. We further validate the effectiveness of these strategies by assessing the results from an outage probability perspective. focuses on improving maritime communication by developing a dynamic model of the maritime channel and implementing a Kalman filter-based buoy motion tracking system. This system is designed to enable precise beamforming, a technique used to direct communication signals more accurately. By improving beamforming, the aim is to enhance the quality of communication links, even in challenging maritime conditions like rough seas and varying sea states. In our simulations that consider realistic wave motions, you've observed significant improvements in link quality due to the enhanced beamforming technique. These improvements are particularly notable in environments with high sea states, where communication challenges are typically more pronounced. The progress made in this area is not just a technical achievement; it has broad implications for the future of maritime communication technologies. This paper promises to revolutionize the way we approach communication in maritime environments, paving the way for more reliable and efficient information exchange on the seas.

An Application Layer Design for Humanoid Robot in the Controller Area Network(CAN) (CAN내장 휴머노이드 로봇에 대한 응용층 설계)

  • Ku, Ja-Bong;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.258-260
    • /
    • 2004
  • The Controller Area Network (CAN) is being widely used in real-time control applications such as automobiles, aircraft, and automated factories. Unfortunately, CAN, in its current form, is not able to either share out the system bandwidth among the different devices fairly or to grant an upper bound on the transmission times experienced by the nodes connected to the communication medium as it happens, for instance, in the token-based networks. In this paper, we present An Application Layer Design for Humanoid Robot in the CAN. Besides introducing the new algorithm, this paper also presents some performance figures obtained using a specially developed software simulator and experimentation for composition of CAN which uses JTAG mode of a parallel debugging., while the behavior of the new algorithm is compared with the traditional CAN systems. in order to see how effective they are.

  • PDF

Design of 868/915MHz SoC System Architecture for Wireless Personal Area Network (개인 무선 통신을 위한 868/915MHz SoC 시스템 구조 설계)

  • Park, Joo-Ho;Oh, Jung-Yeol;Ko, Young-Joon;Kil, Min-Su;Kim, Jae-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2007
  • According to development of wireless communication technologies, we need not only high data rate but low data rate system of low power consumption. This low data rate system is utilized in the field of home automation, health care, sensoring and monitoring, etc. IEEE 802.15.4 LR-WPAN system is the best choice for realizing ubiquitous networking system. In this paper SoC Architecture for IEEE 802.15.4 Low Rate WPAN is designed. IEEE 802.15.4 Low Rate WPAN system serves the functions and realization of home area network. We propose the SoC architecture for 868/915MHz frequency band of IEEE 802.15.4 Low Rate WPAN system. The key issue is to design SoC architecture which provides the function of Low Rate WPAN system to meet the requirement of IEEE 802.15.4 standards.

  • PDF

Design and Verification of Automotive CAN Controller (차량용 CAN 제어기의 설계 및 검증)

  • Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.162-165
    • /
    • 2017
  • CAN (controller area network) is a standard real-time serial communication protocol, and it was developed to control various in-vehicle electronic modules. In this paper, a CAN controller was designed in Verilog HDL, based on CAN ver. 2.0A and 2.0B. The designed CAN controller was implemented in FPGA, and it was verified its operation by connecting commercial chips. Its size is about 7,800 gates when synthesized in 0.18um technology.

An Improved Priority Application for Humanoid Robot in the Controller Area Network(CAN) (CAN내장 휴머노이드 로봇에 대한 진보된 우선순위 적용)

  • Ku Ja-bong;Huh Uk-youl;Kim Jin-geol;Kim Byung-yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.714-719
    • /
    • 2004
  • The Controller Area Network (CAN) is being widely used in real-time control applications such as automobiles, aircraft, and automated factories. Unfortunately, CAN, in its current form, is not able to either share out the system bandwidth among the different devices fairly or to grant an upper bound on the transmission times experienced by the nodes connected to the communication medium as it happens, for instance, in the token-based networks. In this paper. we present the message scheduling for CAN, based on the distributed control scheme to integrate actuators and sensors in a humanoid robot. Besides introducing the new algorism, this paper also presents some performance figures obtained using a specially developed software simulator, while the behavior of the new algorism is compared with the traditional CAN systems, in order to see how effective they are.

An Controller Area Network(CAN) Application for Humanoid Robot (휴머노이드 로봇에 대한 CAN 적용)

  • Ku, Ja-Bong;Huh, Uk-Youl;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2400-2402
    • /
    • 2004
  • The Controller Area Network (CAN) is being widely used in real-time control applications such as automobiles, aircraft, and automated factories. Unfortunately, CAN, in its current form, is not able to either share out the system bandwidth among the different devices fairly or to grant an upper bound on the transmission times experienced by the nodes connected to the communication medium as it happens, for instance, in the token-based networks. In this paper, we present the message scheduling for CAN, based on the distributed control scheme to integrate actuators and sensors in a humanoid robot. Besides introducing the new algorithm, this paper also presents some performance figures obtained using a specially developed software simulator, while the behavior of the new algorithm is compared with the traditional CAN systems, in order to see how effective they are.

  • PDF