• Title/Summary/Keyword: Network clustering

Search Result 1,269, Processing Time 0.026 seconds

A Clustering Scheme for Discovering Congested Routes on Road Networks

  • Li, He;Bok, Kyoung Soo;Lim, Jong Tae;Lee, Byoung Yup;Yoo, Jae Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1836-1842
    • /
    • 2015
  • On road networks, the clustering of moving objects is important for traffic monitoring and routes recommendation. The existing schemes find out density route by considering the number of vehicles in a road segment. Since they don’t consider the features of each road segment such as width, length, and directions in a road network, the results are not correct in some real road networks. To overcome such problems, we propose a clustering method for congested routes discovering from the trajectories of moving objects on road networks. The proposed scheme can be divided into three steps. First, it divides each road network into segments with different width, length, and directions. Second, the congested road segments are detected through analyzing the trajectories of moving objects on the road network. The saturation degree of each road segment and the average moving speed of vehicles in a road segment are computed to detect the congested road segments. Finally, we compute the final congested routes by using a clustering scheme. The experimental results showed that the proposed scheme can efficiently discover the congested routes in different directions of the roads.

An Educational Program for Reduction of Transmission Network (송전망 축약을 위한 교육용 프로그램 개발)

  • Song, Hyoung-Yong;Jeong, Yun-Won;Won, Jong-Jip;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.153-154
    • /
    • 2008
  • This paper presents a window-based software package for the education and training for the reduction of power system by using locational marginal price (LMP), clustering, and similarity indices of each bus. The developed package consists of three modules: 1) the LMP module, 2) the Clustering module and 3) the Reduction module. Each module has a separated and interactive interface window. First of all, LMPs are created in the LMP module, and then the Clustering module carries out clustering based on the results of the LMP module. Finally, groups created in this Clustering module are reduced by using the similarity indices of each bus. The developed package displays a variety of tables for results of the LMPs of base network, voltages, phases and power flow of reduced network so that the user can easily understand the reduction of network. To demonstrate the performance of the developed package, it is tested for the IEEE 39-bus power system.

  • PDF

Dissolved Gas Analysis of Power Transformer Using Fuzzy Clustering and Radial Basis Function Neural Network

  • Lee, J.P.;Lee, D.J.;Kim, S.S.;Ji, P.S.;Lim, J.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • Diagnosis techniques based on the dissolved gas analysis(DGA) have been developed to detect incipient faults in power transformers. Various methods exist based on DGA such as IEC, Roger, Dornenburg, and etc. However, these methods have been applied to different problems with different standards. Furthermore, it is difficult to achieve an accurate diagnosis by DGA without experienced experts. In order to resolve these drawbacks, this paper proposes a novel diagnosis method using fuzzy clustering and a radial basis neural network(RBFNN). In the neural network, fuzzy clustering is effective for selecting the efficient training data and reducing learning process time. After fuzzy clustering, the RBF neural network is developed to analyze and diagnose the state of the transformer. The proposed method measures the possibility and degree of aging as well as the faults occurred in the transformer. To demonstrate the validity of the proposed method, various experiments are performed and their results are presented.

CACHE:Context-aware Clustering Hierarchy and Energy efficient for MANET (CACHE:상황인식 기반의 계층적 클러스터링 알고리즘에 관한 연구)

  • Mun, Chang-min;Lee, Kang-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.571-573
    • /
    • 2009
  • Mobile Ad-hoc Network(MANET) needs efficient node management because the wireless network has energy constraints. Mobility of MANET would require the topology change frequently compared with a static network. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. Previously proposed a hybrid routing CACH prolong the network lifetime and decrease latency. However the algorithm has a problem when node density is increase. In this paper, we propose a new method that the CACHE(Context-aware Clustering Hierarchy and Energy efficient) algorithm. The proposed analysis could not only help in defining the optimum depth of hierarchy architecture CACH utilize, but also improve the problem about node density.

  • PDF

A Layer-based Dynamic Unequal Clustering Method in Large Scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 계층 기반의 동적 불균형 클러스터링 기법)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6081-6088
    • /
    • 2012
  • An unequal clustering method in wireless sensor networks is the technique that forms the cluster of different size. This method decreases whole energy consumption by solving the hot spot problem. In this paper, I propose a layer-based dynamic unequal clustering using the unequal clustering model. This method decreases whole energy consumption and maintain that equally using optimal cluster's number and cluster head position. I also show that proposed method is better than previous clustering method at the point of network lifetime.

A Clustering Protocol with Mode Selection for Wireless Sensor Network

  • Kusdaryono, Aries;Lee, Kyung-Oh
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.29-42
    • /
    • 2011
  • Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way, since their energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor networks. In this paper, we introduce a clustering protocol with mode selection (CPMS) for wireless sensor networks. Our scheme improves the performance of BCDCP (Base Station Controlled Dynamic Clustering Protocol) and BIDRP (Base Station Initiated Dynamic Routing Protocol) routing protocol. In CPMS, the base station constructs clusters and makes the head node with the highest residual energy send data to the base station. Furthermore, we can save the energy of head nodes by using the modes selection method. The simulation results show that CPMS achieves longer lifetime and more data message transmissions than current important clustering protocols in wireless sensor networks.

Data Clustering Using Hybrid Neural Network

  • Guan, Donghai;Gavrilov, Andrey;Yuan, Weiwei;Lee, Sung-Young;Lee, Young-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.457-458
    • /
    • 2007
  • Clustering plays an indispensable role for data analysis. Many clustering algorithms have been developed. However, most of them suffer poor performance of learning. To archive good clustering performance, we develop a hybrid neural network model. It is the combination of Multi-Layer Perceptron (MLP) and Adaptive Resonance Theory 2 (ART2). It inherits two distinct advantages of stability and plasticity from ART2. Meanwhile, by combining the merits of MLP, it improves the performance for clustering. Experiment results show that our model can be used for clustering with promising performance.

The Design of Granular-based Radial Basis Function Neural Network by Context-based Clustering (Context-based 클러스터링에 의한 Granular-based RBF NN의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1230-1237
    • /
    • 2009
  • In this paper, we develop a design methodology of Granular-based Radial Basis Function Neural Networks(GRBFNN) by context-based clustering. In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The output space is granulated making use of the K-Means clustering while the input space is clustered with the aid of a so-called context-based fuzzy clustering. The number of information granules produced for each context is adjusted so that we satisfy a certain reconstructability criterion that helps us minimize an error between the original data and the ones resulting from their reconstruction involving prototypes of the clusters and the corresponding membership values. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the values of the context and the prototypes in the input space. The other parameters of these local functions are subject to further parametric optimization. Numeric examples involve some low dimensional synthetic data and selected data coming from the Machine Learning repository.

Energy-Efficient Cluster Head Selection Method in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적 클러스터 헤드 선정 기법)

  • Nam, Choon-Sung;Jang, Kyung-Soo;Shin, Ho-Jin;Shin, Dong-Ryeol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.25-30
    • /
    • 2010
  • Wireless sensor networks is composed of many similar sensor nodes with limited resources. They are randomly scattered over a specific area and self-organize the network. For guarantee of network life time, load balancing and scalability in sensor networks, sensor networks needs the clustering algorithm which distribute the networks to a local cluster. In existing clustering algorithms, the cluster head selection method has two problems. One is additional communication cost for finding location and energy of nodes. Another is unequal clustering. To solve them, this paper proposes a novel cluster head selection algorithm revised previous clustering algorithm, LEACH. The simulation results show that the energy compared with the previous clustering method is reduced.

Data Correlation-Based Clustering Algorithm in Wireless Sensor Networks

  • Yeo, Myung-Ho;Seo, Dong-Min;Yoo, Jae-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.3
    • /
    • pp.331-343
    • /
    • 2009
  • Many types of sensor data exhibit strong correlation in both space and time. Both temporal and spatial suppressions provide opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not on the correlation of sensor data. In this paper, we propose a novel clustering algorithm based on the correlation of sensor data. We modify the advertisement sub-phase and TDMA schedule scheme to organize clusters by adjacent sensor nodes which have similar readings. Also, we propose a spatio-temporal suppression scheme for our clustering algorithm. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the size of data which have been collected in the base station. As a result, our experimental results show that the size of data is reduced and the whole network lifetime is prolonged.