• Title/Summary/Keyword: Network by/for AI

Search Result 403, Processing Time 0.022 seconds

A Study on Trust Transfer in Traditional Fintech of Smart Banking (핀테크 서비스에서 오프라인에서 온라인으로의 신뢰전이에 관한 연구 - 스마트뱅킹을 중심으로 -)

  • Ai, Di;Kwon, Sun-Dong;Lee, Su-Chul;Ko, Mi-Hyun;Lee, Bo-Hyung
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.167-184
    • /
    • 2017
  • In this study, we investigated the effect of offline banking trust on smart banking trust. As influencing factors of smart banking trust, this study compared offline banking trust, smart banking's system quality, and information quality. For the empirical study, 186 questionnaire data were collected from smart banking users and the data were analyzed using Smart-PLS 2.0. As results, it was verified that there is trust transfer in FinTech service, by the significant effect of offline banking trust on smart banking trust. And it was proved that the effect of offline banking trust on smart banking trust is lower than that of smart banking itself. The contribution of this study can be seen in both academic and industrial aspects. First, it is the contribution of the academic aspect. Previous studies on banking were focused on either offline banking or smart banking. But this study, focus on the relationship between offline banking and online banking, proved that offline banking trust affects smart banking trust. Next, it is the industrial contribution. This study showed that offline banking characteristics of traditional commercial banks affect the trust of emerging smart banking service. This means that the emerging FinTech companies are not advantageous in the competition of trust building compared to traditional commercial banks. Unlike traditional commercial banks, the emerging FinTech is innovating the convenience of customers by arming them with new technologies such as mobile Internet, social network, cloud technology, and big data. However, these FinTech strengths alone can not guarantee sufficient trust needed for financial transactions, because banking customers do not change a habit or an inertia that they already have during using traditional banks. Therefore, emerging FinTech companies should strive to create destructive value that reflects the connection with various Internet services and the strength of online interaction such as social services, which have an advantage over customer contacts. And emerging FinTech companies should strive to build service trust, focused on young people with low resistance to new services.

  • PDF

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.