• Title/Summary/Keyword: Network by/for AI

Search Result 403, Processing Time 0.044 seconds

A SCATTERING MECHANISM IN OYSTER FARM BY POLARIMETRIC AND JERS-l DATA

  • Lee Seung-Kuk;Won Joong Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.538-541
    • /
    • 2005
  • Tidal flats develop along the south coast ofthe Korean peninsula. These areas are famous for sea farming. Specially, strong and coherent radar backscattering signals are observed over oyster sea farms that consist of artificial structures. Tide height in oyster farm is possible to measure by using interferometric phase and intensity of SAR data. It is assumed that the radar signals from oyster farm could be considered as double-bouncing returns by vertical and horizontal bars. But, detailed backscattering mechanism and polarimetric characteristics in oyster farm had not been well studied. We could not demonstrate whether the assumption is correct or not and exactly understand what the properties of back scattering were in oyster farm without full polarimetric data. The results of AIRSAR L-band POLSAR data, experiments in laboratory and JERS-l images are discussed. We carried out an experiment simulating a target structure using vector network analyser (Y.N.A.) in an anechoic chamber at Niigata University. Radar returns from vertical poles are stronger than those from horizontal poles by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with height of vertical poles. As black absorber replaced AI-plate in bottom surface, double bounce in vertical pole decreased. It is observed that not all oyster farms are characterized by double bounced scattering in AIRSAR data. The image intensity of the double bounce dominant oyster farm was investigated with respect to that of oyster farm dominated by single bounce in JERS-l SAR data. The image intensity model results in a correlation coefficient (R2 ) of 0.78 in double bounce dominant area while that of 0.54 in single bouncing dominant area. This shows that double bounce dominant area should be selected for water height measurement using In8AR technique.

  • PDF

An Effectiveness Verification for Evaluating the Amount of WTCI Tongue Coating Using Deep Learning (딥러닝을 이용한 WTCI 설태량 평가를 위한 유효성 검증)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.226-231
    • /
    • 2019
  • A WTCI is an important criteria for evaluating an mount of patient's tongue coating in tongue diagnosis. However, Previous WTCI tongue coating evaluation methods is a most of quantitatively measuring ration of the extracted tongue coating region and tongue body region, which has a non-objective measurement problem occurring by exposure conditions of tongue image or the recognition performance of tongue coating. Therefore, a WTCI based on deep learning is proposed for classifying an amount of tonger coating in this paper. This is applying the AI deep learning method using big data. to WTCI for evaluating an amount of tonger coating. In order to verify the effectiveness performance of the deep learning in tongue coating evaluating method, we classify the 3 types class(no coating, some coating, intense coating) of an amount of tongue coating by using CNN model. As a results by testing a building the tongue coating sample images for learning and verification of CNN model, proposed method is showed 96.7% with respect to the accuracy of classifying an amount of tongue coating.

Data Modeling for Cyber Security of IoT in Artificial Intelligence Technology (인공지능기술의 IoT 통합보안관제를 위한 데이터모델링)

  • Oh, Young-Taek;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.57-65
    • /
    • 2021
  • A hyper-connected intelligence information society is emerging that creates new value by converging IoT, AI, and Bigdata, which are new technologies of the fourth industrial revolution, in all industrial fields. Everything is connected to the network and data is exploding, and artificial intelligence can learn on its own and even intellectual judgment functions are possible. In particular, the Internet of Things provides a new communication environment that can be connected to anything, anytime, anywhere, enabling super-connections where everything is connected. Artificial intelligence technology is implemented so that computers can execute human perceptions, learning, reasoning, and natural language processing. Artificial intelligence is developing advanced technologies such as machine learning, deep learning, natural language processing, voice recognition, and visual recognition, and includes software, machine learning, and cloud technologies specialized in various applications such as safety, medical, defense, finance, and welfare. Through this, it is utilized in various fields throughout the industry to provide human convenience and new values. However, on the contrary, it is time to respond as intelligent and sophisticated cyber threats are increasing and accompanied by potential adverse functions such as securing the technical safety of new technologies. In this paper, we propose a new data modeling method to enable IoT integrated security control by utilizing artificial intelligence technology as a way to solve these adverse functions.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we proposes a Convolutional Neural Networks(CNN) equipped with Batch Normalization(BN) for handwritten digit recognition training the MNIST dataset. Aiming to surpass the performance of LeNet-5 by LeCun et al., a 6-layer neural network was designed. The proposed model processes 28×28 pixel images through convolution, Max Pooling, and Fully connected layers, with the batch normalization to improve learning stability and performance. The experiment utilized 60,000 training images and 10,000 test images, applying the Momentum optimization algorithm. The model configuration used 30 filters with a 5×5 filter size, padding 0, stride 1, and ReLU as activation function. The training process was set with a mini-batch size of 100, 20 epochs in total, and a learning rate of 0.1. As a result, the proposed model achieved a test accuracy of 99.22%, surpassing LeNet-5's 99.05%, and recorded an F1-score of 0.9919, demonstrating the model's performance. Moreover, the 6-layer model proposed in this paper emphasizes model efficiency with a simpler structure compared to LeCun et al.'s LeNet-5 (7-layer model) and the model proposed by Ji, Chun and Kim (10-layer model). The results of this study show potential for application in real industrial applications such as AI vision inspection systems. It is expected to be effectively applied in smart factories, particularly in determining the defective status of parts.

Implementation of CNN-based Classification Training Model for Unstructured Fashion Image Retrieval using Preprocessing with MASK R-CNN (비정형 패션 이미지 검색을 위한 MASK R-CNN 선형처리 기반 CNN 분류 학습모델 구현)

  • Seunga, Cho;Hayoung, Lee;Hyelim, Jang;Kyuri, Kim;Hyeon-Ji, Lee;Bong-Ki, Son;Jaeho, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • In this paper, we propose a detailed component image classification algorithm by fashion item for unstructured data retrieval in the fashion field. Due to the COVID-19 environment, AI-based online shopping malls are increasing recently. However, there is a limit to accurate unstructured data search with existing keyword search and personalized style recommendations based on user surfing behavior. In this study, pre-processing using Mask R-CNN was conducted using images crawled from online shopping sites and then classified components for each fashion item through CNN. We obtain the accuaracy for collar of the shirt's as 93.28%, the pattern of the shirt as 98.10%, the 3 classese fit of the jeans as 91.73%, And, we further obtained one for the 4 classes fit of jeans as 81.59% and the color of the jeans as 93.91%. At the results for the decorated items, we also obtained the accuract of the washing of the jeans as 91.20% and the demage of jeans accuaracy as 92.96%.

Weather Recognition Based on 3C-CNN

  • Tan, Ling;Xuan, Dawei;Xia, Jingming;Wang, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3567-3582
    • /
    • 2020
  • Human activities are often affected by weather conditions. Automatic weather recognition is meaningful to traffic alerting, driving assistance, and intelligent traffic. With the boost of deep learning and AI, deep convolutional neural networks (CNN) are utilized to identify weather situations. In this paper, a three-channel convolutional neural network (3C-CNN) model is proposed on the basis of ResNet50.The model extracts global weather features from the whole image through the ResNet50 branch, and extracts the sky and ground features from the top and bottom regions by two CNN5 branches. Then the global features and the local features are merged by the Concat function. Finally, the weather image is classified by Softmax classifier and the identification result is output. In addition, a medium-scale dataset containing 6,185 outdoor weather images named WeatherDataset-6 is established. 3C-CNN is used to train and test both on the Two-class Weather Images and WeatherDataset-6. The experimental results show that 3C-CNN achieves best on both datasets, with the average recognition accuracy up to 94.35% and 95.81% respectively, which is superior to other classic convolutional neural networks such as AlexNet, VGG16, and ResNet50. It is prospected that our method can also work well for images taken at night with further improvement.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

A Study on Deep Learning based Aerial Vehicle Classification for Armament Selection (무장 선택을 위한 딥러닝 기반의 비행체 식별 기법 연구)

  • Eunyoung, Cha;Jeongchang, Kim
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.936-939
    • /
    • 2022
  • As air combat system technologies developed in recent years, the development of air defense systems is required. In the operating concept of the anti-aircraft defense system, selecting an appropriate armament for the target is one of the system's capabilities in efficiently responding to threats using limited anti-aircraft power. Much of the flying threat identification relies on the operator's visual identification. However, there are many limitations in visually discriminating a flying object maneuvering high speed from a distance. In addition, as the demand for unmanned and intelligent weapon systems on the modern battlefield increases, it is essential to develop a technology that automatically identifies and classifies the aircraft instead of the operator's visual identification. Although some examples of weapon system identification with deep learning-based models by collecting video data for tanks and warships have been presented, aerial vehicle identification is still lacking. Therefore, in this paper, we present a model for classifying fighters, helicopters, and drones using a convolutional neural network model and analyze the performance of the presented model.

Aerodynamic Approaches for the Predition of Spread the HPAI (High Pathogenic Avian Influenza) on Aerosol (고병원성 조류인플루엔자 (HPAI)의 에어로졸을 통한 공기 전파 예측을 위한 공기유동학적 확산 모델 연구)

  • Seo, Il-Hwan;Lee, In-Bok;Moon, Oun-Kyung;Hong, Se-Woon;Hwnag, Hyun-Seob;Bitog, J.P.;Kwon, Kyeong-Seok;Kim, Ki-Youn
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • HPAI (High pathogenic avian influenza) which is a disease legally designated as an epidemic generally shows rapid spread of disease resulting in high mortality rate as well as severe economic damages. Because Korea is contiguous with China and southeast Asia where HPAI have occurred frequently, there is a high risk for HPAI outbreak. A prompt treatment against epidemics is most important for prevention of disease spread. The spread of HPAI should be considered by both direct and indirect contact as well as various spread factors including airborne spread. There are high risk of rapid propagation of HPAI flowing through the air because of collective farms mostly in Korea. Field experiments for the mechanism of disease spread have limitations such as unstable weather condition and difficulties in maintaining experimental conditions. In this study, therefore, computational fluid dynamics which has been actively used for mass transfer modeling were adapted. Korea has complex terrains and many livestock farms are located in the mountain regions. GIS numerical map was used to estimate spreads of virus attached aerosol by means of designing three dimensional complicated geometry including farm location, road network, related facilities. This can be used as back data in order to take preventive measures against HPAI occurrence and spread.

Battery-loaded power management algorithm of electric propulsion ship based on power load and state learning model (전력 부하와 학습모델 기반의 전기추진선박의 배터리 연동 전력관리 알고리즘)

  • Oh, Ji-hyun;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1202-1208
    • /
    • 2020
  • In line with the current era of the 4th Industrial Revolution, it is necessary to prepare for the future by integrating AI elements in the ship sector. In addition, it is necessary to respond to this in the field of power management for the appearance of autonomous ships. In this study, we propose a battery-linked electric propulsion system (BLEPS) algorithm using machine learning's DNN. For the experiment, we learned the pattern of ship power consumption for each operation mode based on the ship data through LabView and derived the battery status through Python to check the flexibility of the generator and battery interlocking. As a result of the experiment, the low load operation of the generator was reduced through charging and discharging of the battery, and economic efficiency and reliability were confirmed by reducing the fuel consumption of 1% of LNG.