• Title/Summary/Keyword: Network biology

Search Result 509, Processing Time 0.026 seconds

The Anti-apoptotic Effect of Ghrelin on Restraint Stress-Induced Thymus Atrophy in Mice

  • Jun Ho Lee;Tae-Jin Kim;Jie Wan Kim;Jeong Seon Yoon;Hyuk Soon Kim;Kyung-Mi Lee
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.242-248
    • /
    • 2016
  • Thymic atrophy is a complication that results from exposure to many environmental stressors, disease treatments, and microbial challenges. Such acute stress-associated thymic loss can have a dramatic impact on the host's ability to replenish the necessary naïve T cell output to reconstitute the peripheral T cell numbers and repertoire to respond to new antigenic challenges. We have previously reported that treatment with the orexigenic hormone ghrelin results in an increase in the number and proliferation of thymocytes after dexamethasone challenge, suggesting a role for ghrelin in restraint stress-induced thymic involution and cell apoptosis and its potential use as a thymostimulatory agent. In an effort to understand how ghrelin suppresses thymic T cell apoptosis, we have examined the various signaling pathways induced by receptor-specific ghrelin stimulation using a restraint stress mouse model. In this model, stress-induced apoptosis in thymocytes was effectively blocked by ghrelin. Western blot analysis demonstrated that ghrelin prevents the cleavage of pro-apoptotic proteins such as Bim, Caspase-3, and PARP. In addition, ghrelin stimulation activates the Akt and Mitogen-activated protein kinases (MAPK) signaling pathways in a time/dose-dependent manner. Moreover, we also revealed the involvement of the FoxO3a pathway in the phosphorylation of Akt and ERK1/2. Together, these findings suggest that ghrelin inhibits apoptosis by modulating the stress-induced apoptotic signal pathway in the restraint-induced thymic apoptosis.

Analysis of Internet Biology Study Sites and Guidelines for Constructing Educational Homepages (인터넷상의 고등학교 생물 학습사이트 비교분석 및 웹사이트 구축방안에 관한 연구)

  • Kim, Joo-Hyun;Sung, Jung-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.4
    • /
    • pp.779-795
    • /
    • 2002
  • Internet, a world wide network of computers, is considered as a sea of information because it allows people to share information beyond the barriors of time and space. However, in spite of the unmeasurable potential applications of the internet, its use in the field of biology education has been extremely limited mainly due to the scarcity of good biology-related sites. In order to provide useful guidelines for constructing user-friendly study sites, which can help high school students with different intellectual levels to study biology, comparative studies were performed on selected educational sites. Initially, hundreds of related sites were examined, and, subsequently, four distinct sites were selected not only because they are well organized, but also because each is unique in its contents. Also, a survey was carried out against the users of each site. The survey results indicated that the high school students regard the web-based biology study tools as effective teaching methods although there might be some bias in criteria for selecting target sites. In addition to the detailed biology topics and the related biology informations, multimedia data including pictures, animations and movies are found to be one of the important ingredients for desirable biology study sites. Thus, the inclusion of multimedia components should also be considered when developing a systematic biology study site. Overall, the role of the cyber space is expected to become more and more important. Since the development of the user-satisfied and self-guided sites require interdisciplinary collaborational efforts which should be made to promote extensive communication among teachers, education professionals, and computer engineers. Furthermore, the introduction of good biology study sites to the students by their teachers is also important factor for the successful web-based education.

Development of Medical Herbs Network Multidimensional Analysis System through Literature Analysis on PubMed (PubMed 문헌 분석을 통한 한약재 네트워크 다차원 분석 시스템 개발)

  • Seo, Dongmin;Yu, Seok Jong;Lee, Min-Ho;Yea, Sang-Jun;Kim, Chul
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.6
    • /
    • pp.260-269
    • /
    • 2016
  • With the development of genomics, wearable device and IT/NT, a vast amount of bio-medical data are generated recently. Also, healthcare industries based on big-data are booming and big-data technology based on bio-medical data is rising rapidly as a core technology for improving the national health and aged society. Also, oriental medicine research is focused with modern research technology and validate it's various biochemical effect by combining with molecular biology technology. However there are few searching system for finding biochemical mechanism which is related to major compounds in oriental medicine. Therefore, in this paper, we collected papers related with medical herbs from PubMed and constructed a medical herbs database to store and manage chemical, gene/protein and biological interaction information extracted by a literature analysis on the papers. Also, to supporting a multidimensional analysis on the database, we developed a network analysis system based on a hierarchy structure of chemical, gene/protein and biological interaction information. Finally, we expect this system will be used the major tool to discover various biochemical effect by combining with molecular biology technology.

Performance analysis of volleyball games using the social network and text mining techniques (사회네트워크분석과 텍스트마이닝을 이용한 배구 경기력 분석)

  • Kang, Byounguk;Huh, Mankyu;Choi, Seungbae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.619-630
    • /
    • 2015
  • The purpose of this study is to provide basic information to develop a game strategy plan of a team in a future by identifying the patterns of attack and pass of national men's professional volleyball teams and extracting core key words related with volleyball game performance to evaluate game performance using 'social network analysis' and 'text mining'. As for the analysis result of 'social network analysis' with the whole data, group '0' (6 players) and group '1' (11 players) were partitioned. A point of view the degree centrality and betweenness centrality in 'social network analysis' results, we can know that the group '1' more active game performance than the group '0'. The significant result for two group (win and loss) obtained by 'text mining' according to two groups ('0' and '1') obtained by 'social network analysis' showed significant difference (p-value: 0.001). As for clustering of each network, group '0' had the tendency to score points through set player D and E. In group '1', the player K had the tendency to fail if he attack through 'dig'; players C and D have a good performance through 'set' play.

The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

  • Joo, Hee Kyoung;Lee, Yu Ran;Kang, Gun;Choi, Sunga;Kim, Cuk-Seong;Ryoo, Sungwoo;Park, Jin Bong;Jeon, Byeong Hwa
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1064-1070
    • /
    • 2015
  • Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10-100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO ($0.1-0.5{\mu}m$), a specific mitochondrial antioxidants, and cyclosporin A ($1-5{\mu}m$), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam ($1-50{\mu}m$), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.

The Human PTK6 Interacts with a 23-kDa Tyrosine-Phosphorylated Protein and is localized in Cytoplasm in Breast Carcinoma T-47D Cells

  • Bae, Joon-Seol;Lee, Seung-Thek
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • The human PTK6 (also known as Brk) polypeptide, which is deduced from its full-length cDNA, represents a non-receptor protein tyrosine kinase (PTK). It contains SH3, SH2, and tyrosine kinase catalytic domains that are closely related to Src family members. We generated an antihuman PTK6 antibody by immunizing rabbits with a PTK6-specific oligopeptide conjugated to BSA, which corresponds to 11 amino acid residues near the C-terminus. An immunoblot analysis with the antibody detected an expected 52-kDa band in various mammalian transformed cell lines. Immunoprecipitation and immunoblot analyses demonstrated that PTK6 is phosphorylated on the tyrosine residues) and interacts with approximately a 23-kDa tyrosine-phosphorylated polypeptide (most likely a substrate of PTK6) in breast carcinoma T-47D cells. An immunofluorescence analysis demonstrated that PTK6 is localized throughout the cytoplasm of T-47D cells. These results support a possible role for PTK6 in the intracellular signal transduction through tyrosine phosphorylation.

  • PDF

Solution Structure of YKR049C, a Putative Redox Protein from Saccharomyces cerevisiae

  • Jung, Jin-Won;Yee, Adelinda;Wu, Bin;Arrowsmith, Cheryl H.;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.550-554
    • /
    • 2005
  • YKR049C is a mitochondrial protein in Saccharomyces cerevisiae that is conserved among yeast species, including Candida albicans. However, no biological function for YKR049C has been ascribed based on its primary sequence information. In the present study, NMR spectroscopy was used to determine the putative biological function of YKR049C based on its solution structure. YKR049C shows a well-defined thioredoxin fold with a unique insertion of helices between two $\beta$-strands. The central $\beta$-sheet divides the protein into two parts; a unique face and a conserved face. The 'unique face' is located between ${\beta}2$ and ${\beta}3$. Interestingly, the sequences most conserved among YKR049C families are found on this 'unique face', which incorporates L109 to E114. The side chains of these conserved residues interact with residues on the helical region with a stretch of hydrophobic surface. A putative active site composed by two short helices and a single Cys97 was also well observed. Our findings suggest that YKR049C is a redox protein with a thioredoxin fold containing a single active cysteine.

Oct4 resetting by Aurkb–PP1 cell cycle axis determines the identity of mouse embryonic stem cells

  • Shin, Jihoon;Youn, Hong-Duk
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.527-528
    • /
    • 2016
  • In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs.

Brain Somatic Mutations in Epileptic Disorders

  • Koh, Hyun Yong;Lee, Jeong Ho
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.881-888
    • /
    • 2018
  • During the cortical development, cells in the brain acquire somatic mutations that can be implicated in various neurodevelopmental disorders. There is increasing evidence that brain somatic mutations lead to sporadic form of epileptic disorders with previously unknown etiology. In particular, malformation of cortical developments (MCD), ganglioglioma (GG) associated with intractable epilepsy and non-lesional focal epilepsy (NLFE) are known to be attributable to brain somatic mutations in mTOR pathway genes and others. In order to identify such somatic mutations presenting as low-level in epileptic brain tissues, the mutated cells should be enriched and sequenced with high-depth coverage. Nevertheless, there are a lot of technical limitations to accurately detect low-level of somatic mutations. Also, it is important to validate whether identified somatic mutations are truly causative for epileptic seizures or not. Furthermore, it will be necessary to understand the molecular mechanism of how brain somatic mutations disturb neuronal circuitry since epilepsy is a typical example of neural network disorder. In this review, we overview current genetic techniques and experimental tools in neuroscience that can address the existence and significance of brain somatic mutations in epileptic disorders as well as their effect on neuronal circuitry.

The Oxidative Modification of COL6A1 in Membrane Proteins of Ovarian Cancer Patients

  • Yang, Hee-Young;Lee, Tae-Hoon
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2012
  • Ovarian cancer is the most lethal gynecological malignancy, and specific biomarkers are important needed to improve diagnosis, prognosis, and to forecast and monitor treatment efficiency. There are a lot of pathological factors, including reactive oxygen species (ROS), involved in the process of cancer initiation and progression. The oxidative modification of proteins by ROS is implicated in the etiology or progression of disorders and diseases. In this study, a labeling experiment with the thiol-modifying reagent biotinylated iodoacetamide (BIAM) revealed that a variety of proteins were differentially oxidized between normal and tumor tissues of ovarian cancer patients. To identify cysteine oxidation-sensitive proteins in ovarian cancer patients, we performed comparative analysis by nano-UPLC-$MS^E$ shotgun proteomics. We found oxidation-sensitive 22 proteins from 41 peptides containing cysteine oxidation. Using Ingenuity program, these proteins identified were established with canonical network related to cytoskeletal network, cellular organization and maintenance, and metabolism. Among oxidation-sensitive proteins, the modification pattern of Collagen alpha-1(VI) chain (COL6A1) was firstly confirmed between normal and tumor tissues of patients by 2-DE western blotting. This result suggested that COL6A1 might have cysteine oxidative modification in tumor tissue of ovarian cancer patients.