• Title/Summary/Keyword: Network attack detection

Search Result 436, Processing Time 0.026 seconds

An Online Response System for Anomaly Traffic by Incremental Mining with Genetic Optimization

  • Su, Ming-Yang;Yeh, Sheng-Cheng
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.375-381
    • /
    • 2010
  • A flooding attack, such as DoS or Worm, can be easily created or even downloaded from the Internet, thus, it is one of the main threats to servers on the Internet. This paper presents an online real-time network response system, which can determine whether a LAN is suffering from a flooding attack within a very short time unit. The detection engine of the system is based on the incremental mining of fuzzy association rules from network packets, in which membership functions of fuzzy variables are optimized by a genetic algorithm. The incremental mining approach makes the system suitable for detecting, and thus, responding to an attack in real-time. This system is evaluated by 47 flooding attacks, only one of which is missed, with no false positives occurring. The proposed online system belongs to anomaly detection, not misuse detection. Moreover, a mechanism for dynamic firewall updating is embedded in the proposed system for the function of eliminating suspicious connections when necessary.

A Multiple Instance Learning Problem Approach Model to Anomaly Network Intrusion Detection

  • Weon, Ill-Young;Song, Doo-Heon;Ko, Sung-Bum;Lee, Chang-Hoon
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.14-21
    • /
    • 2005
  • Even though mainly statistical methods have been used in anomaly network intrusion detection, to detect various attack types, machine learning based anomaly detection was introduced. Machine learning based anomaly detection started from research applying traditional learning algorithms of artificial intelligence to intrusion detection. However, detection rates of these methods are not satisfactory. Especially, high false positive and repeated alarms about the same attack are problems. The main reason for this is that one packet is used as a basic learning unit. Most attacks consist of more than one packet. In addition, an attack does not lead to a consecutive packet stream. Therefore, with grouping of related packets, a new approach of group-based learning and detection is needed. This type of approach is similar to that of multiple-instance problems in the artificial intelligence community, which cannot clearly classify one instance, but classification of a group is possible. We suggest group generation algorithm grouping related packets, and a learning algorithm based on a unit of such group. To verify the usefulness of the suggested algorithm, 1998 DARPA data was used and the results show that our approach is quite useful.

Intrusion Detection: Supervised Machine Learning

  • Fares, Ahmed H.;Sharawy, Mohamed I.;Zayed, Hala H.
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.305-313
    • /
    • 2011
  • Due to the expansion of high-speed Internet access, the need for secure and reliable networks has become more critical. The sophistication of network attacks, as well as their severity, has also increased recently. As such, more and more organizations are becoming vulnerable to attack. The aim of this research is to classify network attacks using neural networks (NN), which leads to a higher detection rate and a lower false alarm rate in a shorter time. This paper focuses on two classification types: a single class (normal, or attack), and a multi class (normal, DoS, PRB, R2L, U2R), where the category of attack is also detected by the NN. Extensive analysis is conducted in order to assess the translation of symbolic data, partitioning of the training data and the complexity of the architecture. This paper investigates two engines; the first engine is the back-propagation neural network intrusion detection system (BPNNIDS) and the second engine is the radial basis function neural network intrusion detection system (BPNNIDS). The two engines proposed in this paper are tested against traditional and other machine learning algorithms using a common dataset: the DARPA 98 KDD99 benchmark dataset from International Knowledge Discovery and Data Mining Tools. BPNNIDS shows a superior response compared to the other techniques reported in literature especially in terms of response time, detection rate and false positive rate.

CRF Based Intrusion Detection System using Genetic Search Feature Selection for NSSA

  • Azhagiri M;Rajesh A;Rajesh P;Gowtham Sethupathi M
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.131-140
    • /
    • 2023
  • Network security situational awareness systems helps in better managing the security concerns of a network, by monitoring for any anomalies in the network connections and recommending remedial actions upon detecting an attack. An Intrusion Detection System helps in identifying the security concerns of a network, by monitoring for any anomalies in the network connections. We have proposed a CRF based IDS system using genetic search feature selection algorithm for network security situational awareness to detect any anomalies in the network. The conditional random fields being discriminative models are capable of directly modeling the conditional probabilities rather than joint probabilities there by achieving better classification accuracy. The genetic search feature selection algorithm is capable of identifying the optimal subset among the features based on the best population of features associated with the target class. The proposed system, when trained and tested on the bench mark NSL-KDD dataset exhibited higher accuracy in identifying an attack and also classifying the attack category.

Anomaly behavior detection using Negative Selection algorithm based anomaly detector (Negative Selection 알고리즘 기반 이상탐지기를 이용한 이상행 위 탐지)

  • 김미선;서재현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.391-394
    • /
    • 2004
  • Change of paradigm of network attack technique was begun by fast extension of the latest Internet and new attack form is appearing. But, Most intrusion detection systems detect informed attack type because is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, visibilitys to apply human immunity mechanism are appearing. In this paper, we create self-file from normal behavior profile about network packet and embody self recognition algorithm to use self-nonself discrimination in the human immune system to detect anomaly behavior. Sense change because monitors self-file creating anomaly detector based on Negative Selection Algorithm that is self recognition algorithm's one and detects anomaly behavior. And we achieve simulation to use DARPA Network Dataset and verify effectiveness of algorithm through the anomaly detection rate.

  • PDF

Double Sieve Collision Attack Based on Bitwise Detection

  • Ren, Yanting;Wu, Liji;Wang, An
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.296-308
    • /
    • 2015
  • Advanced Encryption Standard (AES) is widely used for protecting wireless sensor network (WSN). At the Workshop on Cryptographic Hardware and Embedded Systems (CHES) 2012, G$\acute{e}$rard et al. proposed an optimized collision attack and break a practical implementation of AES. However, the attack needs at least 256 averaged power traces and has a high computational complexity because of its byte wise operation. In this paper, we propose a novel double sieve collision attack based on bitwise collision detection, and an improved version with an error-tolerant mechanism. Practical attacks are successfully conducted on a software implementation of AES in a low-power chip which can be used in wireless sensor node. Simulation results show that our attack needs 90% less time than the work published by G$\acute{e}$rard et al. to reach a success rate of 0.9.

A Study on Detection Improvement Technique of Black Hole Node in Ad Hoc Network (Ad Hoc Network에서 블랙 홀 노드 탐지 향상 기법에 관한 연구)

  • Yang, HwanSeok;Yoo, SeungJae
    • Convergence Security Journal
    • /
    • v.13 no.6
    • /
    • pp.11-16
    • /
    • 2013
  • Mobile node must move optionally and perform the router and the host functions at the same time. These characteristics of nodes have become a potential threatening element of a variety of attacks. In particular, a black hole which malicious node causes packet loss among them is one of the most important issues. In this paper, we propose distributed detection technique using monitoring tables in all node and cooperative detection technique based cluster for an efficient detection of black hole attack. The proposed technique performs by dividing into local detection and cooperative detection process which is composed of process of step 4 in order to improve the accuracy of the attack detection. Cluster head uses a black hole list to cooperative detection. The performance of the proposed technique was evaluated using ns-2 simulator and its excellent performance could be confirmed in the experiment result.

Performance Analysis of DoS/DDoS Attack Detection Algorithms using Different False Alarm Rates (False Alarm Rate 변화에 따른 DoS/DDoS 탐지 알고리즘의 성능 분석)

  • Jang, Beom-Soo;Lee, Joo-Young;Jung, Jae-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.139-149
    • /
    • 2010
  • Internet was designed for network scalability and best-effort service which makes all hosts connected to Internet to be vulnerable against attack. Many papers have been proposed about attack detection algorithms against the attack using IP spoofing and DoS/DDoS attack. Purpose of DoS/DDoS attack is achieved in short period after the attack begins. Therefore, DoS/DDoS attack should be detected as soon as possible. Attack detection algorithms using false alarm rates consist of the false negative rate and the false positive rate. Moreover, they are important metrics to evaluate the attack detections. In this paper, we analyze the performance of the attack detection algorithms using the impact of false negative rate and false positive rate variation to the normal traffic and the attack traffic by simulations. As the result of this, we find that the number of passed attack packets is in the proportion to the false negative rate and the number of passed normal packets is in the inverse proportion to the false positive rate. We also analyze the limits of attack detection due to the relation between the false negative rate and the false positive rate. Finally, we propose a solution to minimize the limits of attack detection algorithms by defining the network state using the ratio between the number of packets classified as attack packets and the number of packets classified as normal packets. We find the performance of attack detection algorithm is improved by passing the packets classified as attacks.

Optimization of Cyber-Attack Detection Using the Deep Learning Network

  • Duong, Lai Van
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.159-168
    • /
    • 2021
  • Detecting cyber-attacks using machine learning or deep learning is being studied and applied widely in network intrusion detection systems. We noticed that the application of deep learning algorithms yielded many good results. However, because each deep learning model has different architecture and characteristics with certain advantages and disadvantages, so those deep learning models are only suitable for specific datasets or features. In this paper, in order to optimize the process of detecting cyber-attacks, we propose the idea of building a new deep learning network model based on the association and combination of individual deep learning models. In particular, based on the architecture of 2 deep learning models: Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM), we combine them into a combined deep learning network for detecting cyber-attacks based on network traffic. The experimental results in Section IV.D have demonstrated that our proposal using the CNN-LSTM deep learning model for detecting cyber-attacks based on network traffic is completely correct because the results of this model are much better than some individual deep learning models on all measures.

Spark-based Network Log Analysis Aystem for Detecting Network Attack Pattern Using Snort (Snort를 이용한 비정형 네트워크 공격패턴 탐지를 수행하는 Spark 기반 네트워크 로그 분석 시스템)

  • Baek, Na-Eun;Shin, Jae-Hwan;Chang, Jin-Su;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.48-59
    • /
    • 2018
  • Recently, network technology has been used in various fields due to development of network technology. However, there has been an increase in the number of attacks targeting public institutions and companies by exploiting the evolving network technology. Meanwhile, the existing network intrusion detection system takes much time to process logs as the amount of network log increases. Therefore, in this paper, we propose a Spark-based network log analysis system that detects unstructured network attack pattern. by using Snort. The proposed system extracts and analyzes the elements required for network attack pattern detection from large amount of network log data. For the analysis, we propose a rule to detect network attack patterns for Port Scanning, Host Scanning, DDoS, and worm activity, and can detect real attack pattern well by applying it to real log data. Finally, we show from our performance evaluation that the proposed Spark-based log analysis system is more than two times better on log data processing performance than the Hadoop-based system.