최근 인터넷 환경에서 시스템 불법 침입은 계속적으로 증가하고 있다. 이러한 침입을 탐지하기 위한 기법들은 크게 비정상 탐지와 오용 탐지로 분류할 수 있다. 전자는 통계적 방법, 특징 추출 등을 이용하며, 후자는 조건부 확률, 전문가 시스템, 상태 전이 분석, 패턴 매칭 둥을 적용한다. 현재 연구된 침입탐지 시스템들은 결합된 방법을 사용하고 있다. 본 연구에서는 상태전이 기법과 연관 마이닝 기법을 결합한 새로운 침입 탐지 알고리즘을 제안한다. 이를 위해 첫 번째 단계는 네트워크를 통해서 입력된 명령어에 대해서 상태 테이블을 작성하는데, 이는 기존의 상태전이 분석 방법과 유사하다. 다음 단계는 연관 마이닝 기법을 이용하여 침입의 유형을 판정한다. 이러한 처리 과정에 따라 본 연구에서는 자동화된 침입 시나리오 생성 알고리즘을 제안한다.
Calcium aluminate glasses transmit light at relatively long wavelengths up to 6 ㎛ and exhibit also low Rayleigh scattering values. However they have a tendency to get devitrified easily, which limits their use as routine optical materials. Here, the ternary system CaO-Al2O3-SiO2 glasses with low-silica (<30 mol%) were prepared to prevent the devitrification of CaO-Al2O3 glasses and the properties were investigated as functions of composition. The addition of SiO2 to calcium aluminate glasses promoted their stability, which was due to the decrease of non-bridging oxygens and the reconnection of network. As SiO2 was added, density, refractive index, molar volume of oxygens and thermal expansion coefficient decreased continuously. But the glass transition temperatures with increasing SiO2 contents were raised and then lowered. It was postulated that the anomaly was related to the changes of the middle range order as well as the short range order. As the amount of SiO2 in the glass was increased, the IR cut-off values moved to shorter wavelength owing to 'Si-O' antisymetric stretching vibration. The IR cut-off wavelength of the glasses with 5 and 30 mol% SiO2 was 4.90, 4.55 ㎛, respectively.
Li, Tao;Xu, Wenduo;Wang, Li Na;Li, Ningpeng;Ren, Yongjun;Xia, Jinyue
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권5호
/
pp.1690-1707
/
2021
Precipitation prediction during flood season has been a key task of climate prediction for a long time. This type of prediction is linked with the national economy and people's livelihood, and is also one of the difficult problems in climatology. At present, there are some precipitation forecast models for the flood season, but there are also some deviations from these models, which makes it difficult to forecast accurately. In this paper, based on the measured precipitation data from the flood season from 1993 to 2019 and the precipitation return data of CWRF, ANN cycle modeling and a weighted integration method is used to correct the CWRF used in today's operational systems. The MAE and TCC of the precipitation forecast in the flood season are used to check the prediction performance of the proposed algorithm model. The results demonstrate a good correction effect for the proposed algorithm. In particular, the MAE error of the new algorithm is reduced by about 50%, while the time correlation TCC is improved by about 40%. Therefore, both the generalization of the correction results and the prediction performance are improved.
The Journal of Asian Finance, Economics and Business
/
제8권3호
/
pp.717-729
/
2021
This paper examines the efficacy of the default risk factor in an emerging market context using the Fama-French five-factor model. Our aim is to test whether the Fama-French five-factor model augmented with a default risk factor improves the predictability of returns of portfolios sorted on the firm's characteristics as well as on industry. The default risk factor is constructed by estimating the probability of default using a hybrid version of dynamic panel probit and artificial neural network (ANN) to proxy default risk. This study also provides evidence on the temporal stability of risk premiums obtained using the Fama-MacBeth approach. Using a sample of 3,806 firm-year observations on non-financial listed companies of Pakistan over 2006-2015 we found that the augmented model performed better when tested across size-investment-default sorted portfolios. The investment factor contains some default-related information, but default risk is independently priced and bears a significantly positive risk premium. The risk premiums are also found temporally stable over the full sample and more recent sample period 2010-2015 as evidence by the Fama-MacBeth regressions. The finding suggests that the default risk factor is not a useless factor and due to mispricing, default risk anomaly prevails in the Pakistani equity market.
LUCAS VERONEZ GOULART FERREIRA;LAXMI RATHOUR;DEVIKA DABKE;FABIO ROBERTO CHAVARETTE;VISHNU NARAYAN MISHRA
Journal of applied mathematics & informatics
/
제41권6호
/
pp.1257-1274
/
2023
Rotating machines heavily rely on an intricate network of interconnected sub-components, with bearing failures accounting for a substantial proportion (40% to 90%) of all such failures. To address this issue, intelligent algorithms have been developed to evaluate vibrational signals and accurately detect faults, thereby reducing the reliance on expert knowledge and lowering maintenance costs. Within the field of machine learning, Artificial Immune Systems (AIS) have exhibited notable potential, with applications ranging from malware detection in computer systems to fault detection in bearings, which is the primary focus of this study. In pursuit of this objective, we propose a novel procedure for detecting novel instances of anomalies in varying operating conditions, utilizing only the signals derived from the healthy state of the analyzed machine. Our approach incorporates AIS augmented by Dynamic Time Warping (DTW). The experimental outcomes demonstrate that the AIS-DTW method yields a considerable improvement in anomaly detection rates (up to 53.83%) compared to the conventional AIS. In summary, our findings indicate that our method represents a significant advancement in enhancing the resilience of AIS-based novelty detection, thereby bolstering the reliability of rotating machines and reducing the need for expertise in bearing fault detection.
Journal of Korea Artificial Intelligence Association
/
제1권1호
/
pp.11-16
/
2023
Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.
이 논문은 모바일 에이전트를 이용해서 보안규칙을 관리하는 방안을 제시하였다. 침입탐지시스템(IDS: Intrusion Detection System)은 침입탐지 모델을 기반으로 비정상적인 행위 탐지(anomlay detection)와 오용 침입탐지 (misuse detection)로 구분할 수 있다. 오용 침입탐지는 알려진 공격방법과 시스템의 취약점들을 이용한 공격들은 탐지가 가능하지만, 알려지지 않은 새로운 공격을 탐지하지 못한다는 단점을 가지고 있다. 이에 본 논문에서는, 계속적으로 인터넷 상을 이동하는 모바일 에이전트를 이용해서 안전하게 보안규칙을 관리하는 방안을 오용탐지의 단점을 해결하는 방안으로 제시하였다. 이러한 모바일 에이전트 메커니즘을 이용해서 보안규칙을 관리하는 것은 침입탐지분야에서는 새로운 시도이며, 모바일 에이전트를 이용해서 보안규칙을 관리하는 방법의 유효성을 증명하기 위해서 기존의 방식과 작업부하 데이터 (workload data)를 수식적으로 비교하였고, NS-2 (Network Simulator)를 이용하여 시간에 대하여 시뮬레이션을 수행하였다.
시스템 호출 감사자료기반 기계학습기법을 사용한 프로그램 행위 학습방법은 효과적인 호스트 기반 침입탐지 방법이며, 규칙 학습, 신경망, 통계적 방법, 은닉 마크로프 모델 등의 방법이 대표적이다. 그 중에서 신경망은 시스템 호출 시퀀스를 학습하는데 있어 적합하다고 알려져 있는데, 실제 문제에 적용하여 좋은 성능을 내기 위해서는 그 구조를 결정하는 것이 중요하다 하지만 보통의 신경망은 그 구조를 찾기 위한 방법이 알려져 있지 않아 침입탐지에 효과적인 구조를 찾기 위해서는 많은 시간이 요구된다. 본 논문에서는 기존 신경망 기반 침입탐지시스템의 단점을 보완하고 성능을 향상시키기 위해 진화신경망을 이용한 방법을 제안한다. 진화 신경망은 신경망의 구조와 가중치를 동시에 학습하기 때문에 일반 신경망보다 빠른 시간에 더 좋은 성능의 신경망을 얻을 수 있다는 장점이 있다. 1999년의 DARPA IDEVAL 자료로 실험한 결과 기존의 연구보다 좋은 탐지율을 보여 진화신경망이 침입탐지에 효과적임을 확인할 수 있었다.
SCADA 시스템은 국가 산업의 주요기반 시설인 교통 상수도 전기 가스 등의 원격지 시설 장치를 감시 및 제어하는 시스템이다. SCADA 시스템은 보안상 여러 취약점을 내재하고 있지만 가용성이 극히 요구되는 특수한 환경에서 운영되고 있다는 점 때문에 보안 기술을 적용하기에 여러 제약을 받는다. 또한, 급속한 정보 통신의 발전과 함께 현대 사회의 많은 부분이 사이버 공간으로 확장되고, 스마트그리드의 필요성이 높아짐에 따라 폐쇄망에서 운영되던 SCADA 시스템이 인터넷과 연결된 개방된 망에서 운영되도록 발전하고 있다. 이로 인해 외부와 접촉할 수 있는 경로가 확장되면서 SCADA 시스템의 취약점이 해커에게 악용될 가능성이 높아졌다. SCADA 시스템에 대한 공격은 국가적 차원의 피해를 유발하므로 이를 예방하고 대응하기 위한 보안 방법이 연구되어야 한다. 일반적으로 정상적인 네트워크 트래픽에서는 자기 유사성의 특성이 나타나는 것으로 알려져 있다. 본 연구에서는 SCADA 시스템의 자기 유사성을 측정하여 이상증후를 탐지하는 침입탐지방법론을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.