• 제목/요약/키워드: Network anatomy

검색결과 84건 처리시간 0.027초

Vitamin C Is an Essential Factor on the Anti-viral Immune Responses through the Production of Interferon-${\alpha}/{\beta}$ at the Initial Stage of Influenza A Virus (H3N2) Infection

  • Kim, Yejin;Kim, Hyemin;Bae, Seyeon;Choi, Jiwon;Lim, Sun Young;Lee, Naeun;Kong, Joo Myung;Hwang, Young-Il;Kang, Jae Seung;Lee, Wang Jae
    • IMMUNE NETWORK
    • /
    • 제13권2호
    • /
    • pp.70-74
    • /
    • 2013
  • L-ascorbic acid (vitamin C) is one of the well-known antiviral agents, especially to influenza virus. Since the in vivo antiviral effect is still controversial, we investigated whether vitamin C could regulate influenza virus infection in vivo by using Gulo (-/-) mice, which cannot synthesize vitamin C like humans. First, we found that vitamin C-insufficient Gulo (-/-) mice expired within 1 week after intranasal inoculation of influenza virus (H3N2/Hongkong). Viral titers in the lung of vitamin C-insufficient Gulo (-/-) mice were definitely increased but production of anti-viral cytokine, interferon (IFN)-${\alpha}/{\beta}$, was decreased. On the contrary, the infiltration of inflammatory cells into the lung and production of pro-inflammatory cytokines, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-${\alpha}/{\beta}$, were increased in the lung. Taken together, vitamin C shows in vivo antiviral immune responses at the early time of infection, especially against influenza virus, through increased production of IFN-${\alpha}/{\beta}$.

A Murine Model of Toluene Diisocyanate-induced Contact Hypersensitivity

  • Chai, Ok Hee;Park, Sung Gil;Sohn, Jang Sihn;Hwang, Seung Soo;Li, Guang Zhao;Han, Eui-Hyeog;Kim, Hyoung Tae;Lee, Moo Sam;Lee, Hurn-Ku;Lee, Yong Chul;Song, Chang Ho
    • IMMUNE NETWORK
    • /
    • 제2권3호
    • /
    • pp.158-165
    • /
    • 2002
  • Background: Toluene diisocyanate (TDI) can cause contact allergy and occupational asthma, but the mechanism underlying sensitization to this chemical compound remains controversal. Also the correlation of mast cell with contact hypersensitivity (CHS) and the role of mast cell in the TDI-induced CHS is unknown. This issue was investigated by administrating TDI on the skin of genetically mast cell-deficient WBB6F1/$J-Kit^{W}/Kit^{W-v}$ ($W/W^{V}$) and congenic normal WBB6F1/J-Kit+/+ (+/+) mice. Methods: To development of animal model of TDI-induced CHS and to investigate the correlation of mast cell with CHS and the role of mast cell in the TDI-induced CHS, $W/W^V$ and +/+ mice were sensitized with TDI on the back skin at day 1 and day 8, and then challenged with 1% TDI on the ear at day 15. At 1, 2, 4, 8, and 24 hours after 1% TDI challenge, the ear thicknesses were measured. It was investigated the histologic changes of dermis in the ear of $W/W^V$ and +/+ mice at 24 hours after 1% TDI challenge. Results: TDI induced a significant ear swelling response in $W/W^V$ and +/+ mice. TDI induced the significant infiltrations of polymorphonuclear leukocytes and eosinophils in $W/W^V$ and +/+ mice, but not of mast cells in normal mice. And TDI increased a characteristic extent of mast cell degranulation in normal mice. There were no significant differences in the ear swelling and the infiltrations of polymorphonuclear leukocytes and eosinophils of normal versus $W/W^V$ mice, either at baseline or after TDI-induced CHS. Conclusion: From the above results, TDI can be used as a murine CHS model, and the mast cells may not be essential in TDI-induced CHS.

Identification of CM1 as a Pathogenic Factor in Inflammatory Diseases and Cancer

  • Bae, Se-Yeon;Kim, Hyem-In;Yu, Yeon-Sil;Lee, Na-Eun;Kong, Joo-Myoung;Kim, Hang-Rae;Hwang, Young-Il;Song, Yeong-Wook;Kang, Jae-Seung;Lee, Wang-Jae
    • IMMUNE NETWORK
    • /
    • 제11권3호
    • /
    • pp.175-181
    • /
    • 2011
  • Background: CM1 (centrocyte/-blast marker 1) was defined by a mAb against concavabalin-A (ConA) activated PBMC. It is expressed in germinal center of human tonsil and on the surface of activated PBMC as well as cancer cells. Recently, increased productions of pro-inflammatory mediators were detected from activated PBMC by CM1 ligation. Methods: However, there is a limitation to explain the exact role of CM1 on inflammation and its related mechanisms, since the identity of CM1 is still not clarified. In our previous study, we have already confirmed that soluble form of CM1 was produced by Raji. Therefore, we performed Q-TOF analysis after immunoprecipitation of concentrated Raji culture supernatant using anti-CM1 mAbs. Results: As a result, we found that CM1 is identical to enolase-1(ENO1), a glycolytic enzyme, and we confirmed that results by silencing ENO1 using siRNA. It was also confirmed through competition assay between anti-CM1 and anti-ENO1 mAbs. Finally, we investigated the possible role of CM1 in inflammatory response and cancer. The ligation of CM1 on Raji cells with anti-CM1 mAbs induces the extensive production of prostaglandin $E_2(PGE_2)$. In addition, the increased activity of matrix metalloproteinase (MMP)-2/9 was shown in NCI-N87, stomach cancer cell line by CM1 stimulation. Conclusion: CM1 is identical to ENO1 and it might be an important role in the regulation of inflammatory responses.

다용량 비타민 C 투여가 생쥐 세포매개면역반응에 미치는 영향 (The Effects of High-dose Vitamin C Administration on the Cell-mediated Immune Response in Mice)

  • 노가화;김헌곤;신영아;임현자;문성규;이용택;이왕재;이동섭;황영일
    • IMMUNE NETWORK
    • /
    • 제3권3호
    • /
    • pp.211-218
    • /
    • 2003
  • Background: Vitamin C is an essential nutrient, taken as a daily supplement by many people. Recently, high-dose vitamin C is considered as a therapeutic regimen in some clinical situations. Until now, few studies have been done with the effects of high-dose vitamin C on the immune response. Methods: In this experiment, the effects of high-dose vitamin C on cell-mediated immune response in immunologically competent mice were evaluated. After intraperitoneal injection of 2.5, 5, or 10 mg/day of vitamin C for 10 days, delayed type hypersensitivity (DTH) was provoked against DNFB in the pinnae as a model for cell-mediated immune response. Severity of DTH reaction was evaluated as the thickness of pinnae, and the vitamin C levels were measured in the serum, liver, kidney, lung, pinnae, and splenocytes. Results: After challenge, the thickness increased at its peak on the $2^{nd}$ day in all groups. On the first day, the pinnae were thicker in the injected groups than in the control. On the contrary, the increment of the pinnae thickness was attenuated and the number of cells infiltrated in the site of DTH decreased proportionately to the amount of vitamin C administered from the second day on. With vitamin C exogenously given, the serum level peaked at 30 min after injection, and returned abruptly to its basal level without accumulation. However, it accumulated in the liver, kidney, and especially in the pinnae inflamed and splenopcytes, proportionately to the amount administered. Conclusion: Based on these results, it is suggested that, in one hand, exogenously administered high-dose vitamin C accumulated in the splenocytes and presumably changed the function of them resulting in the augmented cell-mediated immune response, as was revealed in the first day of DTH reaction. On the other hand, it seems likely that the vitamin C also showed anti-inflammatory effects.

CM1 Ligation Induces Apoptosis via Fas-FasL Interaction in Ramos Cells, but via Down-regulation of Bcl-2 and Subsequent Decrease of Mitochondrial Membrane Potential in Raji Cells

  • Lee, Young-Sun;Kim, Yeong-Seok;Kim, Dae-Jin;Hur, Dae-Young;Kang, Jae-Seung;Kim, Young-In;Hahm, Eun-Sil;Cho, Dae-Ho;Hwang, Young-Il;Lee, Wang-Jae
    • IMMUNE NETWORK
    • /
    • 제6권2호
    • /
    • pp.59-66
    • /
    • 2006
  • Background: CM1 (Centrocyte/-blast Marker I) defined by a mAb developed against concanavalin-A activated PBMC, is expressed specifically on a subpopulation of centroblasts and centrocytes of human germinal center (GC) B cells. Burkitt lymphoma (BL) is a tumor consisting of tumor cells with the characteristics of GC B cell. Previously we reported that CM1 ligation with anti-CM1 mAb induced apoptosis in Ramos $(IgM^{high})$ and Raji $(IgM^{low})$ cells. Methods & Results: In the present study, we observed that CM1 ligation with anti-CM1 mAb induced Fas ligand and Fas expression in Ramos cells, but not in Raji cells. Furthermore, anti-Fas blocking antibody, ZB4, blocked CM1-mediated apoptosis effectively in Ramos cells, but not in Raji cells. Increased mitochondrial membrane permeabilization, which was measured by $DiOC_6$, was observed only in Raji cells. In contrast to no significant change of Bax known as pro-apoptotic protein, anti-apoptotic protein Bcl-2 was significantly decreased in Raji cells. In addition, we observed that CM1 ligation increased release of mitochondrial cytochrome c and upregulated caspase-9 activity in Raji cells. Conclusion: These results suggest that apoptosis induced by CM1-ligation is mediated by Fas-Fas ligand interaction in Ramos cells, whereas apoptosis is mediated by down-regulation of Bcl-2 and subsequent decrease of mitochondrial membrane potential in Raji cells.

Gene Expression Profiling of the Habenula in Rats Exposed to Chronic Restraint Stress

  • Yoo, Hyeijung;Kim, Hyun Jung;Yang, Soo Hyun;Son, Gi Hoon;Gim, Jeong-An;Lee, Hyun Woo;Kim, Hyun
    • Molecules and Cells
    • /
    • 제45권5호
    • /
    • pp.306-316
    • /
    • 2022
  • Chronic stress contributes to the risk of developing depression; the habenula, a nucleus in epithalamus, is associated with many neuropsychiatric disorders. Using genome-wide gene expression analysis, we analyzed the transcriptome of the habenula in rats exposed to chronic restraint stress for 14 days. We identified 379 differentially expressed genes (DEGs) that were affected by chronic stress. These genes were enriched in neuroactive ligand-receptor interaction, the cAMP (cyclic adenosine monophosphate) signaling pathway, circadian entrainment, and synaptic signaling from the Kyoto Encyclopedia of Genes and Genomes pathway analysis and responded to corticosteroids, positive regulation of lipid transport, anterograde trans-synaptic signaling, and chemical synapse transmission from the Gene Ontology analysis. Based on protein-protein interaction network analysis of the DEGs, we identified neuroactive ligand-receptor interactions, circadian entrainment, and cholinergic synapse-related subclusters. Additionally, cell type and habenular regional expression of DEGs, evaluated using a recently published single-cell RNA sequencing study (GSE137478), strongly suggest that DEGs related to neuroactive ligand-receptor interaction and trans-synaptic signaling are highly enriched in medial habenular neurons. Taken together, our findings provide a valuable set of molecular targets that may play important roles in mediating the habenular response to stress and the onset of chronic stress-induced depressive behaviors.

Mitofusin-2 Promotes the Epithelial-Mesenchymal Transition-Induced Cervical Cancer Progression

  • Sung Yong Ahn;Jiwon Song;Yu Cheon Kim;Myoung Hee Kim;Young-Min Hyun
    • IMMUNE NETWORK
    • /
    • 제21권4호
    • /
    • pp.30.1-30.12
    • /
    • 2021
  • High expression of mitofusin-2 (MFN2), a mitochondrial fusion protein, has been frequently associated with poor prognosis of patients with cervical cancer. Here, we aimed to identify the function of MFN2 in cervical cancer to understand its influence on disease prognosis. To this end, from cervical adenocarcinoma, we performed an MTT assay and quantitative RT-PCR (qRT-PCR) analysis to assess the effects of MFN2 on the proliferation and of HeLa cells. Then, colony-formation ability and tumorigenesis were evaluated using a tumor xenograft mouse model. The migration ability related to MFN2 was also measured using a wound healing assay. Consequently, epithelial-mesenchymal transition (EMT) of MFN2-knockdowned HeLa cells originating from adenocarcinoma. markers related to MFN2 were assessed by qRT-PCR. Clinical data were analyzed using cBioPortal and The Cancer Genome Atlas. We found that MFN2 knockdown reduced the proliferation, colony formation ability, migration, and in vivo tumorigenesis of HeLa cells. Primarily, migration of MFN2-knockdowned HeLa cells decreased through the suppression of EMT. Thus, we concluded that MFN2 facilitates cancer progression and in vivo tumorigenesis in HeLa cells. These findings suggest that MFN2 could be a novel target to regulate the EMT program and tumorigenic potential in HeLa cells and might serve as a therapeutic target for cervical cancer. Taken together, this study is expected to contribute to the treatment of patients with cervical cancer.

Vitamin C Induces Apoptosis in Human Colon Cancer Cell Line, HCT-8 Via the Modulation of Calcium Influx in Endoplasmic Reticulum and the Dissociation of Bad from 14-3-$3{\beta}$

  • Kim, Jee Eun;Kang, Jae Seung;Lee, Wang Jae
    • IMMUNE NETWORK
    • /
    • 제12권5호
    • /
    • pp.189-195
    • /
    • 2012
  • It has been reported that vitamin C plays an effective role in the treatment and prevention of cancer, but its specific mechanisms are still largely unknown. The incidence of colon cancer is now increasing in Korea. Therefore, we have examined here the effect of vitamin C on the induction of the apoptosis on colon cancer and its related mechanisms. We have found that remarkable increase of the apoptosis and the calcium influx in endoplasmic reticulum (ER) in human colon cancer cell line, HCT-8. However, vitamin C-induced apoptosis was effectively inhibited by the pre-treatment of BAPTA-AM (1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid), which is well-known as a calcium specific chelator. During the apoptosis, we found the increase of the translocation of Bad to mitochondria from cytosol, after releasing from 14-3-$3{\beta}$. In this process, the expression of Bax, a well-known pro-apoptotic protein, was also increased. Taken together, vitamin C induces apoptosis of colon cancer cell line, HCT-8 through the increase of 1) the calcium influx in endoplasmic reticulum (ER), 2) the translocation of Bad to mitochondria, and 3) the expression of Bax.

정상 면역 생쥐에 접종된 암세포주의 종괴 형성이 숙주의 지연성과민반응에 미치는 영향 (The Effects of the Tumor Mass Size Inoculated in Immunologically Competent Balb/c Mice on Delayed-type Hypersensitivity Response)

  • 임현자;우아미;정영주;강재승;신동훈;이왕재;황영일
    • IMMUNE NETWORK
    • /
    • 제6권4호
    • /
    • pp.185-191
    • /
    • 2006
  • Background: Based on outstanding progresses in animal experiments, vaccines for some human tumors have been developed. However, clinical effects of these vaccines have been far below than expected. This discrepancy might come from differences between animal models and human patients with respect to immunocompetency. The immune status of mice after tumor inoculation has not been well studied, which make us cautious in interpreting and applying the results from mice to human. We evaluated cell-mediated immune responses in mice after tumor cell inoculation. Methods: Mice were inoculated with TA3Ha, CT26, or 4T1. Delayed-type hypersensitivity (DTH) responses were induced 2-4 weeks after inoculation using 2,4-dinitro-1-fluorobenzene as an antigen. The relationships between the severity of DTH responses and the duration of tumor inoculation or the size of tumor mass were analyzed. Results: In T A3Ha groups, DTH response was elevated 2 weeks after inoculation, but depressed after 4 weeks, compared to the control group. When analyzed based on the sizes of tumor masses elicited, DTH responses were inversely related to the mass size, especially in those greater than 10 mm in diameter. In CT26 groups, while the duration after inoculation did not affect the severity of DTH responses, those with large mass showed depressed responses regardless the duration of inoculation. 4T1 cells grew so slowly that the size of tumor mass was small even 4 weeks after inoculation, and this group showed much higher DTH responses compared to that of tumor-free group. Conclusion: At least in an experimental setting where tumor model was induced by inoculating tumor cell lines into immunologically competent mice, the host immune response was elevated in early stage, and then depressed in late stage when the mass grew over a critical size.

Rheumatoid Fibroblast-like Synoviocytes Downregulate Foxp3 Expression by Regulatory T Cells Via GITRL/GITR Interaction

  • Kim, Sung Hoon;Youn, Jeehee
    • IMMUNE NETWORK
    • /
    • 제12권5호
    • /
    • pp.217-221
    • /
    • 2012
  • Fibroblast-like synoviocytes (FLS) colocalize with leukocyte infiltrates in rheumatoid synovia. Proinflammatory leukocytes are known to amplify inflammation by signaling to FLS, but crosstalk between FLS and regulatory T cells (Tregs) remains uncharacterized. To address this possibility, we cocultured FLS lines derived from arthritic mice with Tregs. FLS that expressed the ligand for glucocorticoid-induced TNF receptor family-related gene (GITR) decreased expression of Foxp3 and GITR in Tregs in a contact-dependent manner. This effect was abolished by blocking antibody to GITR. On the other hand, the Tregs caused the FLS to increase IL-6 production. These results demonstrate that inflamed FLS license Tregs to downregulate Foxp3 expression via the GITRL/GITR interaction while the Tregs induce the FLS to increase their production of IL-6. Our findings suggest that the interaction between FLS and Tregs dampens the anti-inflammatory activity of Tregs and amplifies the proinflammatory activity of FLS, thereby exacerbating inflammatory arthritis.