DOI QR코드

DOI QR Code

Mitofusin-2 Promotes the Epithelial-Mesenchymal Transition-Induced Cervical Cancer Progression

  • Sung Yong Ahn (Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Jiwon Song (Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Yu Cheon Kim (Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Myoung Hee Kim (Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Young-Min Hyun (Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine)
  • Received : 2021.05.11
  • Accepted : 2021.07.17
  • Published : 2021.08.31

Abstract

High expression of mitofusin-2 (MFN2), a mitochondrial fusion protein, has been frequently associated with poor prognosis of patients with cervical cancer. Here, we aimed to identify the function of MFN2 in cervical cancer to understand its influence on disease prognosis. To this end, from cervical adenocarcinoma, we performed an MTT assay and quantitative RT-PCR (qRT-PCR) analysis to assess the effects of MFN2 on the proliferation and of HeLa cells. Then, colony-formation ability and tumorigenesis were evaluated using a tumor xenograft mouse model. The migration ability related to MFN2 was also measured using a wound healing assay. Consequently, epithelial-mesenchymal transition (EMT) of MFN2-knockdowned HeLa cells originating from adenocarcinoma. markers related to MFN2 were assessed by qRT-PCR. Clinical data were analyzed using cBioPortal and The Cancer Genome Atlas. We found that MFN2 knockdown reduced the proliferation, colony formation ability, migration, and in vivo tumorigenesis of HeLa cells. Primarily, migration of MFN2-knockdowned HeLa cells decreased through the suppression of EMT. Thus, we concluded that MFN2 facilitates cancer progression and in vivo tumorigenesis in HeLa cells. These findings suggest that MFN2 could be a novel target to regulate the EMT program and tumorigenic potential in HeLa cells and might serve as a therapeutic target for cervical cancer. Taken together, this study is expected to contribute to the treatment of patients with cervical cancer.

Keywords

Acknowledgement

This research was supported by a grant from the National Research Foundation funded by the Ministry of Science and ICT (MSIT) of the government of Korea (2019R1A2C2008481 to Y.-M.H.).

References

  1. Dasari S, Wudayagiri R, Valluru L. Cervical cancer: biomarkers for diagnosis and treatment. Clin Chim Acta 2015;445:7-11. https://doi.org/10.1016/j.cca.2015.03.005
  2. Senapathy JG, Umadevi P, Kannika PS. The present scenario of cervical cancer control and HPV epidemiology in India: an outline. Asian Pac J Cancer Prev 2011;12:1107-1115.
  3. Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet 2019;393:169-182. https://doi.org/10.1016/S0140-6736(18)32470-X
  4. Hernandez-Alvarez MI, Thabit H, Burns N, Shah S, Brema I, Hatunic M, Finucane F, Liesa M, Chiellini C, Naon D, et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1alpha/Mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care 2010;33:645-651. https://doi.org/10.2337/dc09-1305
  5. Bereiter-Hahn J, Voth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 1994;27:198-219. https://doi.org/10.1002/jemt.1070270303
  6. Chien KR, Hoshijima M. Unravelling Ras signals in cardiovascular disease. Nat Cell Biol 2004;6:807-808. https://doi.org/10.1038/ncb0904-807
  7. Manczak M, Calkins MJ, Reddy PH. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Hum Mol Genet 2011;20:2495-2509. https://doi.org/10.1093/hmg/ddr139
  8. Lee S, Sterky FH, Mourier A, Terzioglu M, Cullheim S, Olson L, Larsson NG. Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum Mol Genet 2012;21:4827-4835. https://doi.org/10.1093/hmg/dds352
  9. Chen Y, Liu Y, Dorn GW 2nd. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 2011;109:1327-1331. https://doi.org/10.1161/CIRCRESAHA.111.258723
  10. Cheng X, Zhou D, Wei J, Lin J. Cell-cycle arrest at G2/M and proliferation inhibition by adenovirus-expressed mitofusin-2 gene in human colorectal cancer cell lines. Neoplasma 2013;60:620-626. https://doi.org/10.4149/neo_2013_080
  11. Zhang GE, Jin HL, Lin XK, Chen C, Liu XS, Zhang Q, Yu JR. Anti-tumor effects of Mfn2 in gastric cancer. Int J Mol Sci 2013;14:13005-13021. https://doi.org/10.3390/ijms140713005
  12. Xu K, Chen G, Li X, Wu X, Chang Z, Xu J, Zhu Y, Yin P, Liang X, Dong L. MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci Rep 2017;7:41718.
  13. Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z, Salgia R, Husain AN, Wietholt C, Archer SL. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 2012;26:2175-2186. https://doi.org/10.1096/fj.11-196543
  14. Wang W, Lu J, Zhu F, Wei J, Jia C, Zhang Y, Zhou L, Xie H, Zheng S. Pro-apoptotic and anti-proliferative effects of mitofusin-2 via Bax signaling in hepatocellular carcinoma cells. Med Oncol 2012;29:70-76. https://doi.org/10.1007/s12032-010-9779-6
  15. Lin Z, Lin Y, Shen J, Jiang M, Hou Y. Flavonoids in Ageratum conyzoides L. Exert potent antitumor effects on human cervical adenocarcinoma HeLa cells in vitro and in vivo. BioMed Res Int 2020;2020:2696350.
  16. Jin B, Fu G, Pan H, Cheng X, Zhou L, Lv J, Chen G, Zheng S. Anti-tumour efficacy of mitofusin-2 in urinary bladder carcinoma. Med Oncol 2011;28 Suppl 1:S373-S380. https://doi.org/10.1007/s12032-010-9662-5
  17. Fang CL, Sun DP, Chen HK, Lin CC, Hung ST, Uen YH, Lin KY. Overexpression of mitochondrial GTPase MFN2 represents a negative prognostic marker in human gastric cancer and its inhibition exerts anticancer effects. J Cancer 2017;8:1153-1161. https://doi.org/10.7150/jca.17986
  18. Guzman C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 2014;9:e92444.
  19. Cory G. Scratch-wound assay. Methods Mol Biol 2011;769:25-30. https://doi.org/10.1007/978-1-61779-207-6_2
  20. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  21. Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM, Hartley T, et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 2012;8:277-284. https://doi.org/10.1038/nchembio.773
  22. Kurien BT, Scofield RH. Western blotting: an introduction. Methods Mol Biol 2015;1312:17-30. https://doi.org/10.1007/978-1-4939-2694-7_5
  23. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139:871-890. https://doi.org/10.1016/j.cell.2009.11.007
  24. Ahn SY, Li C, Zhang X, Hyun YM. Mitofusin-2 expression is implicated in cervical cancer pathogenesis. Anticancer Res 2018;38:3419-3426. https://doi.org/10.21873/anticanres.12610
  25. Ghosh P, Vidal C, Dey S, Zhang L. Mitochondria targeting as an effective strategy for cancer therapy. Int J Mol Sci 2020;21:21.
  26. Pustylnikov S, Costabile F, Beghi S, Facciabene A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl Res 2018;202:35-51. https://doi.org/10.1016/j.trsl.2018.07.013
  27. Li T, Han J, Jia L, Hu X, Chen L, Wang Y. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation. Protein Cell 2019;10:583-594. https://doi.org/10.1007/s13238-019-0618-z
  28. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-674. https://doi.org/10.1016/j.cell.2011.02.013
  29. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol 2019;29:212-226. https://doi.org/10.1016/j.tcb.2018.12.001
  30. Cho ES, Kang HE, Kim NH, Yook JI. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res 2019;42:14-24. https://doi.org/10.1007/s12272-018-01108-7
  31. Gajos-Michniewicz A, Czyz M. WNT signaling in melanoma. Int J Mol Sci 2020;21:21.
  32. Taciak B, Pruszynska I, Kiraga L, Bialasek M, Krol M. Wnt signaling pathway in development and cancer. J Physiol Pharmacol 2018;69:69.
  33. Pang G, Xie Q, Yao J. Mitofusin 2 inhibits bladder cancer cell proliferation and invasion via the Wnt/β-catenin pathway. Oncol Lett 2019;18:2434-2442. https://doi.org/10.3892/ol.2019.10570
  34. Palomera-Avalos V, Grinan-Ferre C, Puigoriol-Ilamola D, Camins A, Sanfeliu C, Canudas AM, Pallas M. Resveratrol protects samp8 brain under metabolic stress: focus on mitochondrial function and wnt pathway. Mol Neurobiol 2017;54:1661-1676. https://doi.org/10.1007/s12035-016-9770-0
  35. de Brito OM, Scorrano L. Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering: the role of Ras. Mitochondrion 2009;9:222-226. https://doi.org/10.1016/j.mito.2009.02.005
  36. Wang X, Wang X, Zhou Y, Peng C, Chen H, Lu Y. Mitofusin2 regulates the proliferation and function of fibroblasts: the possible mechanisms underlying pelvic organ prolapse development. Mol Med Rep 2019;20:2859-2866. https://doi.org/10.3892/mmr.2019.10501
  37. Shi J, Yu J, Zhang Y, Wu L, Dong S, Wu L, Wu L, Du S, Zhang Y, Ma D. PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab Invest 2019;99:1795-1809. https://doi.org/10.1038/s41374-019-0286-x
  38. Ma LI, Chang Y, Yu L, He W, Liu Y. Pro-apoptotic and anti-proliferative effects of mitofusin-2 via PI3K/Akt signaling in breast cancer cells. Oncol Lett 2015;10:3816-3822. https://doi.org/10.3892/ol.2015.3748
  39. Fang X, Chen X, Zhong G, Chen Q, Hu C. Mitofusin 2 downregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PI3K/Akt and mitochondrial apoptosis pathways. J Cardiovasc Pharmacol 2016;67:164-174. https://doi.org/10.1097/FJC.0000000000000333
  40. Syed V. Tgf-β signaling in cancer. J Cell Biochem 2016;117:1279-1287. https://doi.org/10.1002/jcb.25496
  41. Sun Q, Chen L, Zhou D, Yang Q, Song W, Chen D, Wang W. Mfn2 inhibits chronic rejection of the rat abdominal aorta by regulating TGF-β1 levels. Transpl Immunol 2019;55:101211.
  42. He H, Yu B, Liu Z, Ye G, You W, Hong Y, Lian Q, Zhang Y, Li X. Vascular progenitor cell senescence in patients with Marfan syndrome. J Cell Mol Med 2019;23:4139-4152. https://doi.org/10.1111/jcmm.14301
  43. Kumar S, Pan CC, Shah N, Wheeler SE, Hoyt KR, Hempel N, Mythreye K, Lee NY. Activation of mitofusin2 by Smad2-RIN1 complex during mitochondrial fusion. Mol Cell 2016;62:520-531. https://doi.org/10.1016/j.molcel.2016.04.010
  44. Wang W, Cheng X, Lu J, Wei J, Fu G, Zhu F, Jia C, Zhou L, Xie H, Zheng S. Mitofusin-2 is a novel direct target of p53. Biochem Biophys Res Commun 2010;400:587-592. https://doi.org/10.1016/j.bbrc.2010.08.108
  45. Abdel-Kader MS, Kamal YT, Alam P, Alqarni MH, Foudah AI. Quantitative analysis of benzyl isothiocyanate in Salvadora persica extract and dental care herbal formulations using reversed phase C18 high-performance liquid chromatography method. Pharmacogn Mag 2017;13 Suppl 3:S412-S416. https://doi.org/10.4103/pm.pm_117_17
  46. Lai KC, Hsiao YT, Yang JL, Ma YS, Huang YP, Chiang TA, Chung JG. Benzyl isothiocyanate and phenethyl isothiocyanate inhibit murine melanoma B16F10 cell migration and invasion in vitro. Int J Oncol 2017;51:832-840. https://doi.org/10.3892/ijo.2017.4084
  47. Sehrawat A, Croix CS, Baty CJ, Watkins S, Tailor D, Singh RP, Singh SV. Inhibition of mitochondrial fusion is an early and critical event in breast cancer cell apoptosis by dietary chemopreventative benzyl isothiocyanate. Mitochondrion 2016;30:67-77. https://doi.org/10.1016/j.mito.2016.06.006