본 연구는 기존 휘트니스 사업의 문제점을 극복하고, 코로나 시국에 대한 늘어난 수요를 충족시킬 수 있는 휘트니스 시스템을 구축하고자 수행되었다. 비대면 휘트니스 에듀테인먼트 서비스를 위한 플랫폼 기술로써 다양한 신체 부위 운동 및 네트워크형 정보 동기화가 가능한 차세대 휘트니스 운동 기구이다. 휘트니스 장비의 운동 정보를 동기화하여, MR 기반 아바타를 통한 학습형 콘텐츠로 구성하였다. 이용하는 사용자의 누적 운동 효과에 따른, LSTM 기반 알고리즘을 적용한 A.I 분석으로 운동량 분석을 통한 맞춤형 평가 시스템의 적용성을 검토하여 정량화된 결과를 도출하였다. 학계 전문가를 통한, 체계적 운동 기법 적용을 위한 모션 캡처 및 3D 가시화 휘트니스 프로그램으로 이용자의 휘트니스 지식 및 운동능력 향상에 기여할 것이라 판단된다.
Background Dermal backflow (DBF), which refers to lymphatic reflux due to lymphatic valve insufficiency, is a diagnostic finding in lymphedema. However, the three-dimensional structure of DBF remains unknown. Photoacoustic lymphangiography (PAL) is a new technique that enables the visualization of the distribution of light-absorbing molecules, such as hemoglobin or indocyanine green (ICG), and can provide three-dimensional images of superficial lymphatic vessels and the venous system. This study reports the use of PAL to visualize DBF structures in the extremities of patients with lymphedema after cancer surgery. Methods Patients with a clinical or lymphographic diagnosis of lymphedema who previously underwent surgery for cancer at one of two participating hospitals were included in this study. PAL was performed using the PAI-05 system. ICG was administered subcutaneously in the affected hand or foot, and ICG fluorescence lymphography was performed using a near-infrared camera system prior to PAL. Results Between April 2018 and January 2019, 21 patients were enrolled and examined using PAL. The DBF was composed of dense, interconnecting, three-dimensional lymphatic vessels. It was classified into three patterns according to the composition of the lymphatic vessels: a linear structure of lymphatic collectors (pattern 1), a network of lymphatic capillaries and lymphatic collectors in an underlying layer (pattern 2), and lymphatic capillaries and precollectors with no lymphatic collectors (pattern 3). Conclusions PAL showed the structure of DBF more precisely than ICG fluorescence lymphography. The use of PAL to visualize DBF assists in understanding the pathophysiology and assessing the severity of cancer-related lymphedema.
본 연구는 빅데이터 분석을 이용하여 코로나19 전후의 3D가상패션에 대한 인식의 변화를 알아보기 위하여 코로나19 발생 전인 2017년 1월1일부터 발생 이후인 2022년 10월30일까지 소셜미디어 네이버, 다음, 구글, 유튜브에서 추출한 3D 가상패션 관련 주요 단어들을 대상으로 텍스톰을 이용하여 빅데이터 자료를 수집하였다. 수집된 단어는 정제 과정을 거친 후 워드클라우드, 단어의 빈도, 연결중심성, 네트워크 시각화와 CONCOR 분석을 실시하였다. 3D 가상패션을 키워드로 32,461개의 단어를 추출하여 분석한 결과 패션, 가상, 기술의 출현빈도와 중심성이 가장 높게 나타났으며 디지털, 디자인, 의상, 활용, 제조의 출현빈도도 높게 나타났다. 이를 통해 3D 가상패션이 기술의 발달과 더불어 산업 전반에 활용되고 있음을 알 수 있었다. 특히 코로나19 이후 가장 부각되는 주요 단어는 메타버스와 3D 교육으로서 패션산업에서의 요구도가 높게 나타나고 있다.
본 연구의 목적은 코로나 19 발병 이후 비대면 사회가 지속됨에 따라 새롭게 각광받는 기술인 "메타버스"에 대한 소비자들의 인식을 빅데이터 분석을 통하여 알아보고자 함에 있다. 본 연구는 코로나19 이전과 이후로 나누어 메타버스에 대한 소비자의 인식을 분석하기 위해 텍스트 마이닝을 활용한 빅데이터 분석을 수행하였다. 단어 정제를 통하여 상위 30개의 키워드를 추출, 이를 토대로 각 키워드간의 연결망 분석, Concor분석을 통하여 시각화를 진행하였다. 분석을 진행한 결과 비대면 사회가 지속되며 메타버스가 트렌드로 급 부상하였다는 것을 확인하였다. 이전의 메타버스는 라이프 로깅의 한부분으로써 SNS 같은 텍스트 데이터에 치중되어 있었지만 이후, 가상현실 공간에 주목하기 시작하여 많은 플랫폼을 발생시키고 산업도 확대 되었다. 본 연구의 한계점은 포털사이트의 검색빈도를 통해 데이터를 수집하였기 때문에 익명성이 보장되어있어 데이터 수집 시 인구통계학적 특성이 반영되지 않았다는 점이다.
특허문서는 연구 개발된 기술에 대한 상세한 결과를 포함하고 있기 때문에 효과적인 기술분석을 위한 다양한 특허분석 방법에 대한 연구가 진행되고 있다. 특히 통계학과 머신러닝 알고리즘에 의한 정량적인 특허분석에 대한 연구가 최근 활발하게 이루어지고 있다. 정량적 특허분석에서 가장 많이 사용되는 특허 데이터는 기술 키워드이다. 기술 키워드 데이터를 분석하는 기존의 방법은 대부분 음의 무한대부터 양의 무한대까지 실수 공간 전체를 확률변수의 값으로 갖는 가우시안 확률분포에 기반한 모형이었다. 본 논문에서는 이론적으로 0부터 양의 무한대까지의 값을 갖는 특허 키워드의 빈도 데이터를 분석하기 위하여 감마 확률분포를 활용한 모형을 제안한다. 또한 감마 회귀모형의 회귀방정식을 결정하기 위하여 키워드 간의 기술 연관성을 시각화하는 2-모드 네트워크를 구축한다. 제안 방법과 기존의 가우시안 기반의 분석모형 간의 성능평가를 위하여 실제 특허 데이터를 수집하여 분석한다.
코로나19 이후 사회적 거리두기와 비대면 서비스, 홈코노미족의 등장과 더불어 방문 외식이 비대면 외식으로 빠르게 대체되고 있다. 본 연구의 목적은 코로나19 창궐 이후 변화하는 외식산업의 트렌드에 맞춰 생활방역 중심의 안전한 외식문화 환경 조성 방안을 발굴하고 음식문화 개선 사업의 방향성 정립 및 사업의 효과성 제고를 도모함이 연구의 목적이다. 본 연구는 코로나 이전인 2018년 01월 01일부터 2019년 10월 31일, 코로나 이후인 2020년 01월 01일부터 2021년 12월 31일까지 TEXTOM을 활용하여 검색빈도 수집 및 정제, TF-IDF분석 수행 및 Ucinet6 프로그램을 활용, NetDraw를 활용한 시각화를 구현, 핵심 키워드의 노드 간 연결망을 파악하였다. 마지막으로 Concor분석을 통해 이들 간의 군집화를 수행하였다. 연구 결과, 코로나19의 이전과 이후 검색 빈도를 확인해 보면 코로나 팬데믹이 외식산업의 변화에 크게 영향을 끼치는 것을 알 수 있다.
최근 의료영상의 발전에 따라 의료 영상 생성에 대한 다양한 연구가 제안되고 있는데, 이와 관련하여 생성된 의료 영상의 품질과 다양성을 정확하게 평가하는 것이 중요해지고 있다. 생성된 의료 영상을 평가하는 방법으로는 전문가의 시각적 튜링 테스트(visual turing test), 특징 분포 시각화, IS, FID를 통한 정량적 평가를 통해 평가하고 있으나 의료 영상을 품질(fidelity)과 다양성(diversity) 측면에서 정량적으로 평가 하는 방법은 거의 이루어지고 있지 않다. 본 논문에서는 DCGAN과 PGGAN 생성 모델을 통해 비소세포폐암 환자의 흉부 CT 데이터 셋을 학습하여 영상을 생성하고, 이를 품질(fidelity)과 다양성(diversity) 측면에서 두 생성 모델의 성능을 평가한다. 1차원 점수 기반 평가방법인 IS, FID와 2차원 점수 기반 평가방법인 Precision 및 Recall, 개선된 Precision 및 Recall을 통해 성능을 정량적으로 평가하고, 의료영상에서의 각 평가방법들의 특징과 한계점에 대해서도 분석한다.
Although on-device artificial intelligence (AI) has gained attention to diagnosing machine faults in real time, most previous studies did not consider the model retraining and redeployment processes that must be performed in real-world industrial environments. Our study addresses this challenge by proposing an on-device AI-based real-time machine fault diagnosis system that utilizes continual learning. Our proposed system includes a lightweight convolutional neural network (CNN) model, a continual learning algorithm, and a real-time monitoring service. First, we developed a lightweight 1D CNN model to reduce the cost of model deployment and enable real-time inference on the target edge device with limited computing resources. We then compared the performance of five continual learning algorithms with three public bearing fault datasets and selected the most effective algorithm for our system. Finally, we implemented a real-time monitoring service using an open-source data visualization framework. In the performance comparison results between continual learning algorithms, we found that the replay-based algorithms outperformed the regularization-based algorithms, and the experience replay (ER) algorithm had the best diagnostic accuracy. We further tuned the number and length of data samples used for a memory buffer of the ER algorithm to maximize its performance. We confirmed that the performance of the ER algorithm becomes higher when a longer data length is used. Consequently, the proposed system showed an accuracy of 98.7%, while only 16.5% of the previous data was stored in memory buffer. Our lightweight CNN model was also able to diagnose a fault type of one data sample within 3.76 ms on the Raspberry Pi 4B device.
Colon adenocarcinoma (COAD) is the predominant type of colorectal cancer. Early diagnosis and treatment can significantly improve the prognosis of COAD patients. Anoctamin 7 (ANO7), an anion channel protein, has been implicated in prostate cancer and other types of cancer. In this study, we analyzed the expression of ANO7 and its correlation with clinicopathological characteristics among COAD patients using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the University of Alabama at Birmingham CANcer (UALCAN) databases. The GEPIA2, Kaplan-Meier plotter, and the Survival Genie platform were employed for survival analysis. The co-expression network and potential function of ANO7 in COAD were analyzed using GeneFriends, the Database for Annotation, Visualization and Integrated Discovery (DAVID), GeneMANIA, and Pathway Studio. Our data analysis revealed a significant reduction in ANO7 expression levels within COAD tissues compared to normal tissues. Additionally, ANO7 expression was found to be associated with race and histological subtype. The COAD patients exhibiting low ANO7 expression had lower survival rates compared to those with high ANO7 expression. The genes correlated with ANO7 were significantly enriched in proteolysis and mucin type O-glycan biosynthesis pathway. Furthermore, ANO7 demonstrated a direct interaction and a positive co-expression correlation with mucin 2 (MUC2). In conclusion, our findings suggest that ANO7 might serve as a potential prognostic biomarker and potentially plays a role in proteolysis and mucin biosynthesis in the context of COAD.
International Journal of Internet, Broadcasting and Communication
/
제16권2호
/
pp.179-184
/
2024
Franchise are now a red ocean in Food industry and they need to find other options to appeal for their product, the uprising content, food tech. The franchises are working on R&D to help franchisees with the operations. Through this paper, we analyze the franchise interest on food tech and to help find the necessity of development for franchisees who are in needs with hand, not of human, but of technology. Using Textom, a big data analysis tool, "franchise" and "food tech" were selected as keywords, and search frequency information of Naver and Daum was collected for a year from 01 January, 2023 to 31 December, 2023, and data preprocessing was conducted based on this. For the suitability of the study and more accurate data, data not related to "food tech" was removed through the refining process, and similar keywords were grouped into the same keyword to perform analysis. As a result of the word refining process, a total of 10,049 words were derived, and among them, the top 50 keywords with the highest relevance and search frequency were selected and applied to this study. The top 50 keywords derived through word purification were subjected to TF-IDF analysis, visualization analysis using Ucinet6 and NetDraw programs, network analysis between keywords, and cluster analysis between each keyword through Concor analysis. By using big data analysis, it was found out that franchise do have interest on food tech. "technology", "franchise", "robots" showed many interests and keyword "R&D" showed that franchise are keen on developing food tech to seize competitiveness in Franchise Industry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.