• Title/Summary/Keyword: Network Visualization

Search Result 478, Processing Time 0.026 seconds

Comparative Analysis of Citation Patterns between Journals and Conferences: A Case Study Based on the JKIISC

  • Byungkyu Kim;Min-Woo Park;Beom-Jong You;Jun Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.171-190
    • /
    • 2024
  • This paper conducts a comparative analysis of citation patterns between journals and conferences using bibliometric and social network analysis on references from the 'Journal of the Korea Institute of Information Security and Cryptology (JKIISC)'. The results indicate that conference references slightly exceed journal references, with around 80% being international publications, highlighting Korean researchers' high dependency on overseas publications. Analysis of citation age shows trends of increasing immediacy citation rate, lengthening citing half-life, and shortening peak time, with domestic publications having higher immediacy citation rate and international publications having slower citing half-life. Mapping SCOPUS journals and ICORE conferences revealed that journal citations mainly come from 'Computer science' (32.3%), 'Engineering' (23.5%), 'Mathematics' (16.7%), and 'Social Cciences' (12.8%), along with other research fields (25.6%), while conference citations are predominantly in 'Cybersecurity and Privacy' with recent increases in 'Computer Vision and Multimedia Computation' and 'Machine Learning'. Co-citation network analysis shows higher degree centrality for conference groups and international publications. The co-citation frequency between different types of literature was highest between journals and conferences (36.9%), compared to within journals (34.3%) or within conferences (28.8%). Lastly, network visualization maps are presented to explore the structural connections among co-cited publications and their research fields. The results of this study suggest that the field of information security research in Korea effectively balances the use of journal and conference literature, indicating that the field is developing through a complementary relationship between these sources.

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts (그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.572-587
    • /
    • 2008
  • The Self-organizing Feature Map(SOFM) that is one of unsupervised neural networks is a very powerful tool for data clustering and visualization in high-dimensional data sets. Although the SOFM has been applied in many engineering problems, it needs to cluster similar weights into one class on the trained SOFM as a post-processing, which is manually performed in many cases. The traditional clustering algorithms, such as t-means, on the trained SOFM however do not yield satisfactory results, especially when clusters have arbitrary shapes. This paper proposes automatic clustering on trained SOFM, which can deal with arbitrary cluster shapes and be globally optimized by graph cuts. When using the graph cuts, the graph must have two additional vertices, called terminals, and weights between the terminals and vertices of the graph are generally set based on data manually obtained by users. The Proposed method automatically sets the weights based on mode-seeking on a distance matrix. Experimental results demonstrated the effectiveness of the proposed method in texture segmentation. In the experimental results, the proposed method improved precision rates compared with previous traditional clustering algorithm, as the method can deal with arbitrary cluster shapes based on the graph-theoretic clustering.

Experiencing with Splunk, a Platform for Analyzing Machine Data, for Improving Recruitment Support Services in WorldJob+ (머신 데이터 분석용 플랫폼 스플렁크를 이용한 취업지원 서비스 개선에 관한 연구 : 월드잡플러스 사례를 중심으로)

  • Lee, Jae Deug;Rhee, MoonKi Kyle;Kim, Mi Ryang
    • Journal of Digital Convergence
    • /
    • v.16 no.3
    • /
    • pp.201-210
    • /
    • 2018
  • WorldJob+, being operated by The Human Resources Development Service of Korea, provides a recruitment support services to overseas companies wanting to hire talented Korean applicants and interns, and support the entire course from overseas advancement information check to enrollment, interview, and learning for young job-seekers. More than 300,000 young people have registered in WorldJob+, an overseas united information network, for job placement. To innovate WorldJob+'s services for young job-seekers, Splunk, a powerful platform for analyzing machine data, was introduced to collate and view system log files collected from its website. Leveraging Splunk's built-in data visualization and analytical features, WorldJob+ has built custom tools to gain insight into the operation of the recruitment supporting service system and to increase its integrity. Use cases include descriptive and predictive analytics for matching up services to allow employers and job seekers to be matched based on their respective needs and profiles, and connect jobseekers with the best recruiters and employers on the market, helping job seekers secure the best jobs fast. This paper will cover the numerous ways WorldJob+ has leveraged Splunk to improve its recruitment supporting services.

Image Based Damage Detection Method for Composite Panel With Guided Elastic Wave Technique Part I. Damage Localization Algorithm (복합재 패널에서 유도 탄성파를 이용한 이미지 기반 손상탐지 기법 개발 Part I. 손상위치 탐지 알고리즘)

  • Kim, Changsik;Jeon, Yongun;Park, Jungsun;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • In this paper, a new algorithm is proposed to estimate the damage location in the composite panel by extracting the elastic wave signal reflected from the damaged area. The guided elastic wave is generated by a piezoelectric actuator and sensed by a piezoelectric sensor. The proposed algorithm adopts a diagnostic approach. It compares the non-damaged signal with the damaged signal, and extract damage information along with sensor network and lamb wave group velocity estimated by signal correlation. However, it is difficult to clearly distinguish the damage location due to the nonlinear properties of lamb wave and complex information composed of various signals. To overcome this difficulty, the cumulative summation feature vector algorithm(CSFV) and a visualization technique are newly proposed in this paper. CSFV algorithm finds the center position of the damage by converting the signals reflected from the damage to the area of distance at which signals reach, and visualization technique is applied that expresses feature vectors by multiplying damage indexes. Experiments are performed for a composite panel and comparative study with the existing algorithms is carried out. From the results, it is confirmed that the damage location can be detected by the proposed algorithm with more reliable accuracy.

Chest CT Image Patch-Based CNN Classification and Visualization for Predicting Recurrence of Non-Small Cell Lung Cancer Patients (비소세포폐암 환자의 재발 예측을 위한 흉부 CT 영상 패치 기반 CNN 분류 및 시각화)

  • Ma, Serie;Ahn, Gahee;Hong, Helen
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Non-small cell lung cancer (NSCLC) accounts for a high proportion of 85% among all lung cancer and has a significantly higher mortality rate (22.7%) compared to other cancers. Therefore, it is very important to predict the prognosis after surgery in patients with non-small cell lung cancer. In this study, the types of preoperative chest CT image patches for non-small cell lung cancer patients with tumor as a region of interest are diversified into five types according to tumor-related information, and performance of single classifier model, ensemble classifier model with soft-voting method, and ensemble classifier model using 3 input channels for combination of three different patches using pre-trained ResNet and EfficientNet CNN networks are analyzed through misclassification cases and Grad-CAM visualization. As a result of the experiment, the ResNet152 single model and the EfficientNet-b7 single model trained on the peritumoral patch showed accuracy of 87.93% and 81.03%, respectively. In addition, ResNet152 ensemble model using the image, peritumoral, and shape-focused intratumoral patches which were placed in each input channels showed stable performance with an accuracy of 87.93%. Also, EfficientNet-b7 ensemble classifier model with soft-voting method using the image and peritumoral patches showed accuracy of 84.48%.

Deep Neural Network Analysis System by Visualizing Accumulated Weight Changes (누적 가중치 변화의 시각화를 통한 심층 신경망 분석시스템)

  • Taelin Yang;Jinho Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.85-92
    • /
    • 2023
  • Recently, interest in artificial intelligence has increased due to the development of artificial intelligence fields such as ChatGPT and self-driving cars. However, there are still many unknown elements in training process of artificial intelligence, so that optimizing the model requires more time and effort than it needs. Therefore, there is a need for a tool or methodology that can analyze the weight changes during the training process of artificial intelligence and help out understatnding those changes. In this research, I propose a visualization system which helps people to understand the accumulated weight changes. The system calculates the weights for each training period to accumulates weight changes and stores accumulated weight changes to plot them in 3D space. This research will allow us to explore different aspect of artificial intelligence learning process, such as understanding how the model get trained and providing us an indicator on which hyperparameters should be changed for better performance. These attempts are expected to explore better in artificial intelligence learning process that is still considered as unknown and contribute to the development and application of artificial intelligence models.

A Customized Cancer Radiation Treatment Planning Simulation (ccRTPs) System via Web and Network (웹과 네트워크 기술을 이용한 환자 맞춤식 암치료 계획 시뮬레이션 시스템)

  • Khm, O-Yeon
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.144-152
    • /
    • 2006
  • The telemedicine using independent client-server system via networks can provide high quality normalized services to many hospitals, specifically to local/rural area hospitals. This will eventually lead to a decreased medical cost because the centralized institute can handle big computer hardware systems and complicated software systems efficiently and economically, Customized cancer radiation treatment planning for each patient Is very useful for both a patient and a doctor because it makes possible for the most effective treatment with the least possible dose to patient. Radiation planners know that too small a dose to the tumor can result in recurrence of the cancer, while too large a dose to healthy tissue can cause complications or even death. The best solution is to build an accurate planning simulation system to provide better treatment strategies based on each patient's computerized tomography (CT) image. We are developing a web-based and a network-based customized cancer radiation therapy simulation system consisting of four Important computer codes; a CT managing code for preparing the patients target data from their CT image files, a parallel Monte Carlo high-energy beam code (PMCEPT code) for calculating doses against the target generated from the patient CT image, a parallel linear programming code for optimizing the treatment plan, and scientific data visualization code for efficient pre/post evaluation of the results. The whole softwares will run on a high performance Beowulf PC cluster of about 100-200 CPUs. Efficient management of the hardware and software systems is not an easy task for a hospital. Therefore, we integrated our system into the client-sewer system via network or web and provide high quality normalized services to many hospitals. Seamless communication with doctors is maintained via messenger function of the server-client system.

  • PDF

Rare Malware Classification Using Memory Augmented Neural Networks (메모리 추가 신경망을 이용한 희소 악성코드 분류)

  • Kang, Min Chul;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.847-857
    • /
    • 2018
  • As the number of malicious code increases steeply, cyber attack victims targeting corporations, public institutions, financial institutions, hospitals are also increasing. Accordingly, academia and security industry are conducting various researches on malicious code detection. In recent years, there have been a lot of researches using machine learning techniques including deep learning. In the case of research using Convolutional Neural Network, ResNet, etc. for classification of malicious code, it can be confirmed that the performance improvement is higher than the existing classification method. However, one of the characteristics of the target attack is that it is custom malicious code that makes it operate only for a specific company, so it is not a form spreading widely to a large number of users. Since there are not many malicious codes of this kind, it is difficult to apply the previously studied machine learning or deep learning techniques. In this paper, we propose a method to classify malicious codes when the amount of samples is insufficient such as targeting type malicious code. As a result of the study, we confirmed that the accuracy of 97% can be achieved even with a small amount of data by applying the Memory Augmented Neural Networks model.

A Study on Research Trends in Korea's Smart Logistics Field by using R and its implications (R을 활용한 한국의 스마트물류 연구동향 분석과 시사점)

  • Song, in-Geun
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.169-180
    • /
    • 2021
  • This study analyzed research trends on smart logistics in Korea by conducting social network analysis (SNA) using R. The purpose of this study is to enhance the understanding of the smart logistics field along with the smart logistics status and policy review, and to suggest implications and future research tasks. The analysis period and subjects were 128 academic journal papers on smart logistics-related topics over the past 10 years (2011-2020), and the results were divided into the first half (2011-2015) and the second half (2016-2020). The analysis of the study was carried out step-by-step through frequency analysis, network centrality analysis, and visualization. As a result of the study, the quantitative increase and diversification of the research field were confirmed. It was also confirmed that the concentration of research on core areas increased by increasing the proportion of duplicate keywords. In addition, keywords with high betweenness centrality and degree centrality score such as Logistics, Authentication, Smart, Service, RFID, Technology, and Revolution were presented. Lastly, this study reviewed the structure with a focus on betweenness centrality after visualizing the network with main keywords. As a result, early research was focused on the field of logistics, and after 2016, it was confirmed that the center of research was diversifying and expanding with the development of the 4th industrial revolution and major technologies.