• Title/Summary/Keyword: Network Security Modeling

Search Result 190, Processing Time 0.022 seconds

Implementation of Smartphone Adaptor for Real-Time Live Simulations (실시간 Live 시뮬레이션을 위한 스마트폰 연동기 구현)

  • Kim, Hyun-Hwi;Lee, Kang-Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.1
    • /
    • pp.9-20
    • /
    • 2013
  • Defense M&S for weapons effectiveness is a realistic way to support virtual warfare similar to real warfare. As the war paradigm becomes platform-centric to network-centric, people try to utilize smartphones as the source of sensor, and command/control data in the simulation-based weapons effectiveness analysis. However, there have been limited researches on integrating smartphones into the weapon simulators, partly due to high modeling cost - modeling cost to accomodate client-server architecture, and re-engineering cost to adapt the simulator on various devices and platforms -, lack of efficient mechanisms to exchange large amount of simulation data, and low-level of security. In this paper, we design and implement Smartphone Adaptor to utilize smartphones for the simulationbased weapons effectiveness analysis. Smartphone Adaptor automatically sends sensor information, GPS and motion data of a client's smartphone to a simulator and receives simulation results from the simulator on the server. Also, we make it possible for data to be transferred safely and quickly through JSON and SEED. Smartphone Adaptor is applied to OpenSIM (Open simulation engine for Interoperable Models) which is an integrated simulation environment for weapons effectiveness analysis, under development of our research team. In this paper, we will show Smartphone Adaptor can be used effectively in constructing a Live simulation, with an example of a chemical simulator.

Analysis of Structural Equation Model on Affecting Factors and Causality of Job Search Intention among Expectant Graduates from University (구조방정식을 이용한 대학졸업예정자들의 구직의도 영향요인 및 인과구조 분석)

  • Ryu, Il;Kim, Sora
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.198-212
    • /
    • 2013
  • The objectives of the study are: 1) to explore the affecting factors on job search intention among expectant graduates from university and 2) to analyze their causal relationships. For the objectives, the Structural Equation Modeling was run using: AMOS 18.0 program. The analysis included total of 231 senior students from three national universities located in non-central regions. The main results are follows as: first, job search network showed a significant and positive indirect effect on job search intention implying the mediating roles of job search attitudes and job search efficacy. Second, job search attitudes and job search efficacy had positive and significant effects on job search intention. Third, job search constraints had a negative effect on job search attitudes, and job search network and job search constraints were positively associated with job search efficacy. Fourth, higher job search network and higher job search efficacy increased the levels of job search clarity, respectively. These results implied that the improvement of job search efficacy, positive attitudes toward job search and the security of social network for job are meed for expectant graduates from university.

A Study on the Research Trends for Smart City using Topic Modeling (토픽 모델링을 활용한 스마트시티 연구동향 분석)

  • Park, Keon Chul;Lee, Chi Hyung
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.119-128
    • /
    • 2019
  • This study aims to analyze the research trends on Smart City and to present implications to policy maker, industry professional, and researcher. Cities around globe have undergone the rapid progress in urbanization and the consequent dramatic increase in urban dwellings over the past few decades, and faced many urban problems in such areas as transportation, environment and housing. Cities around the globe are in a hurry to introduce Smart City to pursue a common goal of solving these urban problems and improving the quality of their lives. However, various conceptual approaches to smart city are causing uncertainty in setting policy goals and establishing direction for implementation. The study collected 11,527 papers titled "Smart City(cities)" from the Scopus DB and Springer DB, and then analyze research status, topic, trends based on abstracts and publication date(year) information using the LDA based Topic Modeling approaches. Research topics are classified into three categories(Services, Technologies, and User Perspective) and eight regarding topics. Out of eight topics, citizen-driven innovation is the most frequently referred. Additional topic network analysis reveals that data and privacy/security are the most prevailing topics affecting others. This study is expected to helps understand the trends of Smart City researches and predict the future researches.

Leased Line Traffic Prediction Using a Recurrent Deep Neural Network Model (순환 심층 신경망 모델을 이용한 전용회선 트래픽 예측)

  • Lee, In-Gyu;Song, Mi-Hwa
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.391-398
    • /
    • 2021
  • Since the leased line is a structure that exclusively uses two connected areas for data transmission, a stable quality level and security are ensured, and despite the rapid increase in the number of switched lines, it is a line method that is continuously used a lot in companies. However, because the cost is relatively high, one of the important roles of the network operator in the enterprise is to maintain the optimal state by properly arranging and utilizing the resources of the network leased line. In other words, in order to properly support business service requirements, it is essential to properly manage bandwidth resources of leased lines from the viewpoint of data transmission, and properly predicting and managing leased line usage becomes a key factor. Therefore, in this study, various prediction models were applied and performance was evaluated based on the actual usage rate data of leased lines used in corporate networks. In general, the performance of each prediction was measured and compared by applying the smoothing model and ARIMA model, which are widely used as statistical methods, and the representative models of deep learning based on artificial neural networks, which are being studied a lot these days. In addition, based on the experimental results, we proposed the items to be considered in order for each model to achieve good performance for prediction from the viewpoint of effective operation of leased line resources.

A Secure Authentication Model Using Two Passwords in Client Server Systems (클라이언트 서버 시스템 환경하에서 2개의 패스워드를 사용하는 안전한 인증 모델)

  • Lee, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1350-1355
    • /
    • 2011
  • It is very important issues to protect many system resources using authorized client authentication in distributed client server systems. So it is not enough to prevent unauthorized opponents from attacking our systems that client authentication is performed using only the client's identifier and password. In this paper, we propose a secure authentication database modeling with two authentication keys such as a client authentication key and a server authentication key. The proposed authentication model can be used making high quality of computer security using two authentication keys during transaction processing. The two authentication keys are created by client and server, and are used in every request transaction without user's extra input. Using the proposed authentication keys, we can detect intrusion during authorized client's transaction processing because we can know intrusion immediately through comparing stored authentication keys in client server systems when hackers attack our network or computer systems.

GP Modeling of Nonlinear Electricity Demand Pattern based on Machine Learning (기계학습 기반 비선형 전력수요 패턴 GP 모델링)

  • Kim, Yong-Gil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.7-14
    • /
    • 2021
  • The emergence of the automated smart grid has become an essential device for responding to these problems and is bringing progress toward a smart grid-based society. Smart grid is a new paradigm that enables two-way communication between electricity suppliers and consumers. Smart grids have emerged due to engineers' initiatives to make the power grid more stable, reliable, efficient and safe. Smart grids create opportunities for electricity consumers to play a greater role in electricity use and motivate them to use electricity wisely and efficiently. Therefore, this study focuses on power demand management through machine learning. In relation to demand forecasting using machine learning, various machine learning models are currently introduced and applied, and a systematic approach is required. In particular, the GP learning model has advantages over other learning models in terms of general consumption prediction and data visualization, but is strongly influenced by data independence when it comes to prediction of smart meter data.

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

Data Mining Approaches for DDoS Attack Detection (분산 서비스거부 공격 탐지를 위한 데이터 마이닝 기법)

  • Kim, Mi-Hui;Na, Hyun-Jung;Chae, Ki-Joon;Bang, Hyo-Chan;Na, Jung-Chan
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.279-290
    • /
    • 2005
  • Recently, as the serious damage caused by DDoS attacks increases, the rapid detection and the proper response mechanisms are urgent. However, existing security mechanisms do not effectively defend against these attacks, or the defense capability of some mechanisms is only limited to specific DDoS attacks. In this paper, we propose a detection architecture against DDoS attack using data mining technology that can classify the latest types of DDoS attack, and can detect the modification of existing attacks as well as the novel attacks. This architecture consists of a Misuse Detection Module modeling to classify the existing attacks, and an Anomaly Detection Module modeling to detect the novel attacks. And it utilizes the off-line generated models in order to detect the DDoS attack using the real-time traffic. We gathered the NetFlow data generated at an access router of our network in order to model the real network traffic and test it. The NetFlow provides the useful flow-based statistical information without tremendous preprocessing. Also, we mounted the well-known DDoS attack tools to gather the attack traffic. And then, our experimental results show that our approach can provide the outstanding performance against existing attacks, and provide the possibility of detection against the novel attack.

Smart Ship Container With M2M Technology (M2M 기술을 이용한 스마트 선박 컨테이너)

  • Sharma, Ronesh;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.278-287
    • /
    • 2013
  • Modern information technologies continue to provide industries with new and improved methods. With the rapid development of Machine to Machine (M2M) communication, a smart container supply chain management is formed based on high performance sensors, computer vision, Global Positioning System (GPS) satellites, and Globle System for Mobile (GSM) communication. Existing supply chain management has limitation to real time container tracking. This paper focuses on the studies and implementation of real time container chain management with the development of the container identification system and automatic alert system for interrupts and for normal periodical alerts. The concept and methods of smart container modeling are introduced together with the structure explained prior to the implementation of smart container tracking alert system. Firstly, the paper introduces the container code identification and recognition algorithm implemented in visual studio 2010 with Opencv (computer vision library) and Tesseract (OCR engine) for real time operation. Secondly it discusses the current automatic alert system provided for real time container tracking and the limitations of those systems. Finally the paper summarizes the challenges and the possibilities for the future work for real time container tracking solutions with the ubiquitous mobile and satellite network together with the high performance sensors and computer vision. All of those components combine to provide an excellent delivery of supply chain management with outstanding operation and security.

The Relationship with Electronic Trust, Web Site Commitment and Service Transaction Intention in Public Shipping B2B e-marketplace (해운 B2B e-marketplace의 전자적 신뢰, 사이트몰입 및 서비스 거래의도와의 관계성)

  • Kim, Yong-Man;Kim, Seog-Yong;Lee, Jong-Hwan;Shim, Gyu-Yeol
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.4
    • /
    • pp.113-139
    • /
    • 2007
  • This study aims to, looking from a standpoint of network, has investigated the shipping industry's B2B e-marketplace, the characteristics that can earn electronic trust from the users, and characteristics of the web-site. It has examined the mechanism whereby electronic trust be earned and how it affects web-site involvement and service transaction intention. Ultimately, The study attempts to make proposals whereby such trust can lead for a cooperative trading community in the shipping industry's B2B e-marketplace The Covalence structural equation modeling was designed and empirically tested for the shipping industry's B2B e-marketplace. The shipping industry employees were given questionnaires and data were analyzed. Except for perceived security of the three characteristic factors on the web-site, the perceived site quality and characteristics factors in operation only affected co-variables. Transaction Fairness was determined to be the most important factor among exogenous factors increasing electronic trust. With regards to transaction rules, if a transaction is beneficial only to one side, then no long term transaction will not take place. If the concerned parties properly recognize that transaction fairness is crucial to electronic transaction, then it will enormously contribute to successful operations of shipping e-marketplace. Also, Perceived efficiency in transaction also affects electronic trust. This reduces transaction costs and speeds up and simplifies the transaction process. It has reduced greater time and costs than existing off-line transaction, and would positively affect electronic trust. By making an open forum for participants to obtain information for transaction, they can gather useful information, and at the same time, the web-site operator can provide information, which, in turn, will increase electronic trust in electronic transaction. Furthermore, such formation of trust in electronic transaction influences shipping companies in such a way that they will want to continuously participate in the transaction, raising web-site involvement. The result of increased trust is that shipping companies in the future will do business with each other and form a foundation for continuous transactions amongst themselves. Consequently, the formation of trust in electronic transaction greatly influences web-site involvement and service transaction intention. The results of the study have again proved that in order to maintain continuous business relationship with the current clients, electronic trust in virtual space, which operates the shipping industry's B2B e-marketplace, is important for the interested parties.

  • PDF