• Title/Summary/Keyword: Network Routing Protocol

Search Result 1,135, Processing Time 0.03 seconds

Traffic Engineering Based on Local States in Internet Protocol-Based Radio Access Networks

  • Barlow David A.;Vassiliou Vasos;Krasser Sven;Owen Henry L.;Grimminger Jochen;Huth Hans-Peter;Sokol Joachim
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.377-384
    • /
    • 2005
  • The purpose of this research is to develop and evaluate a traffic engineering architecture that uses local state information. This architecture is applied to an Internet protocol radio access network (RAN) that uses multi-protocol label switching (MPLS) and differentiated services to support mobile hosts. We assume mobility support is provided by a protocol such as the hierarchical mobile Internet protocol. The traffic engineering architecture is router based-meaning that routers on the edges of the network make the decisions onto which paths to place admitted traffic. We propose an algorithm that supports the architecture and uses local network state in order to function. The goal of the architecture is to provide an inexpensive and fast method to reduce network congestion while increasing the quality of service (QoS) level when compared to traditional routing and traffic engineering techniques. We use a number of different mobility scenarios and a mix of different types of traffic to evaluate our architecture and algorithm. We use the network simulator ns-2 as the core of our simulation environment. Around this core we built a system of pre-simulation, during simulation, and post-processing software that enabled us to simulate our traffic engineering architecture with only very minimal changes to the core ns-2 software. Our simulation environment supports a number of different mobility scenarios and a mix of different types of traffic to evaluate our architecture and algorithm.

Robust Bidirectional Verification Scheme for Detecting Sinkhole Attacks in INSENS of Sensor Networks (센서 네트워크의 INSENS에서 싱크홀 공격을 탐지하기 위한 강인한 양방향 인증 기법)

  • Song, Kyu-hyun;Cho, Tae-ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.77-80
    • /
    • 2015
  • 무선통신을 기반으로 하는 WSN은 통신의 특성상 네트워크보안에 취약점을 가진다. 무선통신의 취약점은 누구나 네트워크에 접근이 가능하다는 것이다. 이에 따라 침입에 강인한 무선 센서 네트워크인 INtrusion-tolerant routing protocol for wireless SEnsor NetworkS(INSENS)가 제안됨으로써 WSN의 초기 라우팅 설정 시 침입하는 공격자를 사전에 차단할 수 있게 되었다. 그러나 라우팅 설정 후에 노드가 공격자에 의해 훼손당하게 된다면, 노드의 주요정보를 이용해 공격자는 또다시 라우팅 공격이 가능해진다. 본 논문에서는 공격자에 의해 훼손된 노드가 라우팅 공격 중 대표적인 공격인 싱크홀 공격 메시지를 방송하였을 때, 페어와이즈 키를 통해 효과적으로 공격메시지를 차단하는 양방향인증기법을 제안한다. 이로써 INSENS에서 발생하는 싱크홀 공격을 차단함으로써 WSN의 보안 강화에 기여한다.

  • PDF

A Balanced Energy Consumption Strategy using a Smart Base Station in Wireless Sensor Networks (무선 센서 네트워크에서 스마트기지국을 이용한 균형된 에너지소비 방안)

  • Park, Sun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.458-465
    • /
    • 2014
  • In this paper, we propose a strategy to distribute the energy consumption over the network. The proposed strategy is based on geographic routing. We use a smart base station that maintains the residual energy and location information of sensor nodes and selects a head node and an anchor node using this information. A head node gathers and aggregates data from the sensor nodes in a target region that interests the user. An anchor node then transmits the data that was forwarded from the head node back to the smart base station. The smart base station extends network lifetime by selecting an optimal head node and an optimal anchor node. We simulate the proposed protocol and compare it with the LEACH protocol in terms of energy consumption, the number of dead nodes, and a distribution map of dead node locations.

Insect-Inspired Algorithm for Zone Radius Determination of Ad-hoc Networks (곤충 행동 양식 기반의 애드 혹 네트워크를 위한 존 반경 결정 알고리즘)

  • Lee, Hea-Min;Kim, Dong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1079-1083
    • /
    • 2014
  • In this paper, a new zone radius determination algorithm is proposed for a nature-inspired routing protocol that emulates the foraging behavior of bees based on their ability to find an optimal route from nectar sites. Instead of changing the radius of nodes one-hop by one-hop, the proposed algorithm alters the radius of nodes as gaps of another radius and adapt quickly to network conditions. The simulation results show that the proposed algorithm has higher efficiency compared with existing studies in an aspect of computational complexity and end-to-end delay.

Topology Design Optimization for Improving Fail-over Performance in Wired Mesh Network (유선 메시 구조에서의 절체 성능 향상을 위한 네트워크 설계 기법)

  • Hwang, Jongsu;Jang, Eunjeong;Lee, Wonoh;Kim, Jonghyeok;Kim, Heearn
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.165-175
    • /
    • 2019
  • Networks use relatively slow heartbeat mechanisms, usually in routing protocols, to detect failures when there is no hardware signaling to help out. The time to detect failures available in the existing protocols is no better than a second, which is far too long for some applications and represents a great deal of lost data at 10 Gigabit rates. We compare the convergence time of routing protocol applying Bidirectional Forwarding Detection (BFD) protocol in wired mesh network topology. This paper suggests the combinations of protocols improving fail-over performance. Through the performance analysis, we contribute to reduce convergence time when system is fail-over.

Performance Evaluation of Distributed Clustering Protocol under Distance Estimation Error

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • The application of Wireless Sensor Networks requires a wise utilization of limited energy resources. Therefore, a wide range of routing protocols with a motivation to prolong the lifetime of a network has been proposed in recent years. Hierarchical clustering based protocols have become an object of a large number of studies that aim to efficiently utilize the limited energy of network components. In this paper, the effect of mismatch in parameter estimation is discussed to evaluate the robustness of a distanced based algorithm called distributed clustering protocol in homogeneous and heterogeneous environment. For quantitative analysis, performance simulations for this protocol are carried out in terms of the network lifetime which is the main criteria of efficiency for the energy limited system.

On the Performance Evaluation of Energy-Aware Sleep Scheduling (EASS) in Energy Harvesting WSN (EH-WSN)

  • Encarnacion, Nico N.;Yang, Hyun-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.264-268
    • /
    • 2012
  • Tree-based structures offer assured optimal paths from the data source to the sink. Shortest routes are disregarded since these do not consider the remaining energy level of the nodes. This shortens the lifetime of the whole network. Most tree-based routing protocols, although aware of the nodes' energy, do not consider an energy aware sleep scheduling scheme. We propose an energy-aware sleep scheduling (EASS) scheme that will improve the sleep scheduling scheme of an existing tree-based routing protocol. An energy harvesting structure will be implemented on the wireless sensor network. The depth of sleep of every node will be based on the harvested energy.

A Study on Multi-level Attack Detection Technique based on Profile Table (프로파일 기반 다단계 공격 탐지 기법에 관한 연구)

  • Yang, Hwan Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.89-96
    • /
    • 2014
  • MANET has been applied to a wide variety of areas because it has advantages which can build a network quickly in a difficult situation to build a network. However, it is become a victim of malicious nodes because of characteristics such as mobility of nodes consisting MANET, limited resources, and the wireless network. Therefore, it is required to lightweight attack detection technique which can accurately detect attack without causing a large burden to the mobile node. In this paper, we propose a multistage attack detection techniques that attack detection takes place in routing phase and data transfer phase in order to increase the accuracy of attack detection. The proposed attack detection technique is composed of four modules at each stage in order to perform accurate attack detection. Flooding attack and packet discard or modify attacks is detected in the routing phase, and whether the attack by modification of data is detected in the data transfer phase. We assume that nodes have a public key and a private key in pairs in this paper.

Performance Analysis of MANET Routing Protocols with Various Data Traffic (다양한 데이터 트래픽을 갖는 이동 애드혹 네트워크용 라우팅 프로토콜의 성능 분석)

  • Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • MANET(Mobile Ad Hoc Network) is the structure in which a source node communicates with a destination node by establishing a route with neighbor nodes without using the existing wired or wireless network. Therefore, the routing protocol for MANET must correspond well to changes in the channel state of moving nodes, and should have simple operation, high reliability, and no routing loop. In this paper, the simulation was perform by using a traffic model with on/off two states provided by the NS-3 network simulator. Also, the duration of the ON state and the duration of the OFF state used the traffic where inter arrival time of data is irregular by generating random values with constant, exponential distribution, and Pareto distribution. The performance of the DSDV, OLSR, and AODV protocols was compare and analyzed using the generated traffic model.

Development of Energy-sensitive Cluster Formation and Cluster Head Selection Technique for Large and Randomly Deployed WSNs

  • Sagun Subedi;Sang Il Lee
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Energy efficiency in wireless sensor networks (WSNs) is a critical issue because batteries are used for operation and communication. In terms of scalability, energy efficiency, data integration, and resilience, WSN-cluster-based routing algorithms often outperform routing algorithms without clustering. Low-energy adaptive clustering hierarchy (LEACH) is a cluster-based routing protocol with a high transmission efficiency to the base station. In this paper, we propose an energy consumption model for LEACH and compare it with the existing LEACH, advanced LEACH (ALEACH), and power-efficient gathering in sensor information systems (PEGASIS) algorithms in terms of network lifetime. The energy consumption model comprises energy-sensitive cluster formation and a cluster head selection technique. The setup and steady-state phases of the proposed model are discussed based on the cluster head selection. The simulation results demonstrated that a low-energy-consumption network was introduced, modeled, and validated for LEACH.