• Title/Summary/Keyword: Network Parameters

Search Result 3,062, Processing Time 0.031 seconds

Design of a Self-tuning Controller with a PID Structure Using Neural Network (신경회로망을 이용한 PID구조를 갖는 자기동조제어기의 설계)

  • Cho, Won-Chul;Jeong, In-Gab;Shim, Tae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.1-8
    • /
    • 2002
  • This paper presents a generalized minimum-variance self-tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior and time delays. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation is done to adapt the nonlinear nonminimum phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct adaptive controller using neural network.

PREDICTION OF EMISSIONS USING COMBUSTION PARAMETERS IN A DIESEL ENGINE FITTED WITH CERAMIC FOAM DIESEL PARTICULATE FILTER THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUES

  • BOSE N.;RAGHAVAN I.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.95-105
    • /
    • 2005
  • Diesel engines have low specific fuel consumption, but high particulate emissions, mainly soot. Diesel soot is suspected to have significant effects on the health of living beings and might also affect global warming. Hence stringent measures have been put in place in a number of countries and will be even stronger in the near future. Diesel engines require either advanced integrated exhaust after treatment systems or modified engine models to meet the statutory norms. Experimental analysis to study the emission characteristics is a time consuming affair. In such situations, the real picture of engine control can be obtained by the modeling of trend prediction. In this article, an effort has been made to predict emissions smoke and NO$_{x}$ using cylinder combustion derived parameters and diesel particulate filter data, with artificial neural network techniques in MATLAB environment. The model is based on three layer neural network with a back propagation learning algorithm. The training and test data of emissions were collected from experimental set up in the laboratory for different loads. The network is trained to predict the values of emission with training values. Regression analysis between test and predicted value from neural network shows least error. This approach helps in the reduction of the experimentation required to determine the smoke and NO$_{x}$ for the catalyst coated filters.

An Electric-Field Coupled Power Transfer System with a Double-sided LC Network

  • Xie, Shi-Yun;Su, Yu-Gang;Zhou, Wei;Zhao, Yu-Ming;Dai, Xin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.289-299
    • /
    • 2018
  • Electric-field coupled power transfer (ECPT) systems employ a high frequency electric field as an energy medium to transfer power wirelessly. Existing ECPT systems have made great progress in terms of increasing the transfer distance. However, the topologies of these systems are complex, and the transfer characteristics are very sensitive to variations in the circuit parameters. This paper proposes an ECPT system with a double-sided LC network, which employs a parallel LC network on the primary side and a series LC network on the secondary side. With the same transfer distance and output power, the proposed system is simpler and less sensitive than existing systems. The expression of the optimal driving voltage for the coupling structure and the characteristics of the LC networks are also analyzed, including the transfer efficiency, parameter sensitivity and total harmonic distortion. Then, a design method for the system parameters is provided according to these characteristics. Simulations and experiments have been carried out to verify the system properties and the design method.

ESTABLISHMENT OF A NEURAL NETWORK MODEL FOR DETECTING A PARTIAL FLOW BLOCKAGE IN AN ASSEMBLY OF A LIQUID METAL REACTOR

  • Seong, Seung-Hwan;Jeong, Hae-Yong;Hur, Seop;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • A partial flow blockage in an assembly of a liquid metal reactor could result in a cooling deficiency of the core. To develop a partial blockage detection system, we have studied the changes of the temperature fluctuation characteristics in the upper plenum according to changes of the t10w blockage conditions in an assembly. We analyzed the temperature fluctuation in the upper plenum with the Large Eddy Simulation (LES) turbulence model in the CFX code and evaluated its statistical parameters. Based on the results of the statistical analyses, we developed a neural network model for detecting a partial flow blockage in an assembly. The neural network model can retrieve the size and the location of a flow blockage in an assembly from a change of the root mean square, the standard deviation, and the skewness in the temperature fluctuation data. The neural network model was found to be a possible alternative by which to identify a flow blockage in an assembly of a liquid metal reactor through learning and validating various flow blockage conditions.

In-process Weld Quality Monitoring by the Multi-layer Perceptron Neural Network in Ultrasonic Metal Welding (초음파 금속용접 시 다층 퍼셉트론 뉴럴 네트워크를 이용한 용접품질의 In-process 모니터링)

  • Shahid, Muhammad Bilal;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.89-97
    • /
    • 2022
  • Ultrasonic metal welding has been widely used for joining lithium-ion battery tabs. Weld quality monitoring has been an important issue in lithium-ion battery manufacturing. This study focuses on the weld quality monitoring in ultrasonic metal welding with the longitudinal-torsional vibration mode horn developed newly. As the quality of ultrasonic welding depends on welding parameters like pressure, time, and amplitude, the suitable values of these parameters were selected for experimentation. The welds were tested via tensile testing machine and weld strengths were investigated. The dataset collected for performance test was used to train the multi-layer perceptron neural network. The three layer neural network was used for the study and the optimum number of neurons in the first and second hidden layers were selected based on performances of each models. The best models were selected for the horn and then tested to see their performances on an unseen dataset. The neural network models for the longitudinal-torsional mode horn attained test accuracy of 90%. This result implies that proposed models has potential for the weld quality monitoring.

Nonlinear Prediction of Streamflow by Applying Pattern Recognition Method (패턴 인식 방법을 적용한 하천유출의 비선형 예측)

  • 강관원;박찬영;김주환
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.105-113
    • /
    • 1992
  • The purpose of this paper is to introduce and to apply the artificial neural network theory to real hydrologic system for forecasting daily streamflows during flood periods. The hydrologic dynamic process of rainfall-runoff is identified by the iterated estimation of system parameters that are determined by adjusting the weights of the network according to the non-linear response characteristics which is formed the model. Back propagation algorithm of neural network model is applied for the estimation of system parameters with past daily rainfall and runoff series data, and streamflows are forecasted using the parameters. The forecasted results are analyzed by statistical methods for the comparison with the observed.

  • PDF

Development of Adaptive Numerical Control System(I)Intelligent Selection of Machining Parameters by Neural-Network Methodology (적응제어 수치제어 시스템의 개발 (I) 신경회로망 기법에 의한 절삭계수의 지적인 선정)

  • 정성종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1223-1233
    • /
    • 1992
  • Chemical and mechanical properties of workpieces and tools are important factors for selecting machining parameters in machining process planning. As there is no universal rule representing the machinability defined by metal removal rate, the selection of machining parameters still requires experience-oriented methods. In this paper, a new approach is presented to develop mathematical models for generating optimum machinability in turning processes based on chemical and mechanical properties of workpieces. Neural-Network methodology is introduced to identify mathematical models for machinability. It is confirmed by simulations that the proposed methodology can be used for developing numerical controllers with adaptive control performance.

Determination of Road Image Quality Using Fuzzy-Neural Network (퍼지신경망을 이용한 도로 영상의 양불량 판정)

  • 이운근;백광렬;이준웅
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.468-476
    • /
    • 2002
  • The confidence of information from image processing depends on the original image quality. Enhancing the confidence by an algorithm has an essential limitation. Especially, road images are exposed to lots of noisy sources, which makes image processing difficult. We, in this paper, propose a FNN (fuzzy-neural network) capable oi deciding the quality of a road image prior to extracting lane-related information. According to the decision by the FNN, road images are classified into good or bad to extract lane-related information. A CDF (cumulative distribution function), a function of edge histogram, is utilized to construct input parameters of the FNN, it is based on the fact that the shape of the CDF and the image quality has large correlation. Input pattern vector to the FNN consists of ten parameters in which nine parameters are from the CDF and the other one is from intensity distribution of raw image. Correlation analysis shows that each parameter represents the image quality well. According to the experimental results, the proposed FNN system was quite successful. We carried out simulations with real images taken by various lighting and weather conditions and achieved about 99% successful decision-making.

A Study on Recognition of Operating Condition for Hydraulic Driving Members

  • Park, Heung-Sik;Kim, Young-Hee;Kim, Dong-Ho;Cho, Yon-Sang;Park, Jae-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.44-49
    • /
    • 2003
  • The morphological analysis of wear debris can provide early a failure diagnosis in lubricated moving system. It can be effective to analyze operating conditions of oil-lubricated tribological system with shape characteristics of wear debris in a lubricant. But, in order to predict and recognize an operating condition of lubricated machine, it is needed to analyze and to identify shape characteristics of wear debris. Therefore, If the morphological characteristics of wear debris are recognized by computer image analysis using the neural network algorithm, it is possible to recognize operating condition of hydraulic driving members. In this study, wear debris in the lubricating oil are extracted by membrane filter (0.45$\mu\textrm{m}$), and the quantitative values of shape parameters of wear debris are calculated by the digital image processing. This shape parameters are studied and identified by the artificial neural network algorithm. The result of study could be applied to prediction and to recognition of the operating condition of hydraulic driving members in lubricated machine systems.

Pattern Classification of Acoustic Emission Signals During Wood Drying by Artificial Neural Network (인공신경망을 이용한 목재건조 중 발생하는 음향방출 신호 패턴분류)

  • 김기복;강호양;윤동진;최만용
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.261-266
    • /
    • 2004
  • This study was Performed to classify the acoustic emission(AE) signal due to surface cracking and moisture movement in the flat-sawn boards of oak(Quercus Variablilis) during drying using the principal component analysis(PCA) and artificial neural network(ANN). To reduce the multicollinearity among AE parameters such as peak amplitude, ring-down count event duration, ring-down count divided by event duration, energy, rise time, and peak amplitude divided by rise time and to extract the significant AE parameters, correlation analysis was performed. Over 96 of the variance of AE parameters could be accounted for by the first and second principal components. An ANN analysis was successfully used to classify the Af signals into two patterns. The ANN classifier based on PCA appeared to be a promising tool to classify the AE signals from wood drying.