• Title/Summary/Keyword: Network Optimization

Search Result 2,232, Processing Time 0.025 seconds

Optimization Methodology of Multiple Air Hole Effects in Substrate Integrated Waveguide Applications

  • Kim, Jin-Yang;Chun, Dong-Wan;Ryu, Christopher Jayun;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.160-168
    • /
    • 2018
  • A wide spectrum of potential applications using substrate integrated waveguide (SIW) technologies in conjunction with air hole regions is introduced, and an efficient optimization methodology to cope with the multiple air hole effect in SIW applications is proposed. The methodology adopts a genetic algorithm to obtain optimum air hole dimensions for the specific propagation constant that can be accurately calculated using the recursive and closed form equations presented. The optimization results are evaluated by designing an SIW bandpass filter, and they show excellent performance. The optimization methodology using the proposed equations is effective in performance enhancement for the purposes of low loss and broadband SIW applications.

Development of Optimization Methodology for Laser Welding Process Automation Using Neural Network Model and Objective Function (레이저 용접공정의 자동화를 위한 신경망 모델과 목적함수를 이용한 최적화 기법 개발)

  • Park, Young-Whan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.123-130
    • /
    • 2006
  • In manufacturing, process automation and parameter optimization are required in order to improve productivity. Especially in welding process, productivity and weldablity should be considered to determine the process parameter. In this paper, optimization methodology was proposed to determine the welding conditions using the objective function in terms of productivity and weldablity. In order to conduct this, welding experiments were carried out. Tensile test was performed to evaluate the weldability. Neural network model to estimate tensile strength using the laser power, welding speed, and wire feed rate was developed. Objective function was defined using the normalized tensile strength which represented the weldablilty and welding speed and wire feed rate which represented the productivity. The optimal welding parameters which maximized the objective function were determined.

Optimal Design of Tire Sidewall Contour using Neural Network (신경회로망을 활용한 타이어 측벽형상의 최적설계)

  • Jeong, H.S.;Shin, S.W.;Cho, J.R.;Kim, N.J.;Kim, K.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.378-383
    • /
    • 2001
  • In order to improve automobile maneuverability and tire durability, it is very important for one to determine a suitable sidewall contour producing the ideal tension and strain-energy distributions. In order to determine such a sidewall contour, one must apply multi-objective optimization technique. The optimization problem of tire carcass contour involves several objective functions. Hence, we execute the tire contour optimization for improving the maneuverability and the tire durability using satisficing trade-off method. And, the tire optimization also requires long cup time for the sensitivity analysis. In order to resolve this numerical difficulty, we apply neural network algorithm.

  • PDF

Classification of Induction Machine Faults using Time Frequency Representation and Particle Swarm Optimization

  • Medoued, A.;Lebaroud, A.;Laifa, A.;Sayad, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.170-177
    • /
    • 2014
  • This paper presents a new method of classification of the induction machine faults using Time Frequency Representation, Particle Swarm Optimization and artificial neural network. The essence of the feature extraction is to project from faulty machine to a low size signal time-frequency representation (TFR), which is deliberately designed for maximizing the separability between classes, a distinct TFR is designed for each class. The feature vectors size is optimized using Particle Swarm Optimization method (PSO). The classifier is designed using an artificial neural network. This method allows an accurate classification independently of load level. The introduction of the PSO in the classification procedure has given good results using the reduced size of the feature vectors obtained by the optimization process. These results are validated on a 5.5-kW induction motor test bench.

Optimization of Queueing Network by Perturbation Analysis (퍼터베이션 분석을 이용한 대기행렬 네트워크의 최적화)

  • 권치명
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.89-102
    • /
    • 2000
  • In this paper, we consider an optimal allocation of constant service efforts in queueing network to maximize the system throughput. For this purpose, using the perturbation analysis, we apply a stochastic optimization algorithm to two types of queueing systems. Our simulation results indicate that the estimates obtained from a stochastic optimization algorithm for a two-tandem queuing network are very accurate, and those for closed loop manufacturing system are a little apart from the known optimal allocation. We find that as simulation time increases for obtaining a new gradient (performance measure with respect to decision variables) by perturbation algorithm, the estimates tend to be more stable. Thus, we consider that it would be more desirable to have more accurate sensitivity of performance measure by enlarging simulation time rather than more searching steps with less accurate sensitivity. We realize that more experiments on various types of systems are needed to identify such a relationship with regards to stopping rule, the size of moving step, and updating period for sensitivity.

  • PDF

Neural Networks for Optimization Problem with Nonlinear Constraints (비선형제한조건을 갖는 최적화문제 신경회로망)

  • Kang, Min-Je
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Hopfield introduced the neural network for linear program with linear constraints. In this paper, Hopfield neural network has been generalized to solve the optimization problems including nonlinear constraints. Also, it has been discussed the methods hew to reconcile optimization problem with neural networks and how to implement the circuits.

Practical optimization of power transmission towers using the RBF-based ABC algorithm

  • Taheri, Faezeh;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.463-479
    • /
    • 2020
  • This paper is aimed to address a simultaneous optimization of the size, shape, and topology of steel lattice towers through a combination of the radial basis function (RBF) neural networks and the artificial bee colony (ABC) metaheuristic algorithm to reduce the computational time because mere metaheuristic optimization algorithms require much time for calculations. To verify the results, use has been made of the CIGRE Tower and a 132 kV transmission towers as numerical examples both based on the design requirements of the ASCE10-97, and the size, shape, and topology have been optimized (in both cases) once by the RBF neural network and once by the MSTOWER analyzer. A comparison of the results shows that the neural network-based method has been able to yield acceptable results through much less computational time.

Personalized Web Service Recommendation Method Based on Hybrid Social Network and Multi-Objective Immune Optimization

  • Cao, Huashan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.426-439
    • /
    • 2021
  • To alleviate the cold-start problem and data sparsity in web service recommendation and meet the personalized needs of users, this paper proposes a personalized web service recommendation method based on a hybrid social network and multi-objective immune optimization. The network adds the element of the service provider, which can provide more real information and help alleviate the cold-start problem. Then, according to the proposed service recommendation framework, multi-objective immune optimization is used to fuse multiple attributes and provide personalized web services for users without adjusting any weight coefficients. Experiments were conducted on real data sets, and the results show that the proposed method has high accuracy and a low recall rate, which is helpful to improving personalized recommendation.

GAN-based Data Augmentation methods for Topology Optimization (위상 최적화를 위한 생산적 적대 신경망 기반 데이터 증강 기법)

  • Lee, Seunghye;Lee, Yujin;Lee, Kihak;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, a GAN-based data augmentation method is proposed for topology optimization. In machine learning techniques, a total amount of dataset determines the accuracy and robustness of the trained neural network architectures, especially, supervised learning networks. Because the insufficient data tends to lead to overfitting or underfitting of the architectures, a data augmentation method is need to increase the amount of data for reducing overfitting when training a machine learning model. In this study, the Ganerative Adversarial Network (GAN) is used to augment the topology optimization dataset. The produced dataset has been compared with the original dataset.

Multi-objective optimization of stormwater pipe networks and on-line stormwater treatment devices in an ultra-urban setting

  • Kim, Jin Hwi;Lee, Dong Hoon;Kang, Joo-Hyon
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2019
  • In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without significantly compromising the pollutant removal efficiency when the pipe network is optimally designed.