• Title/Summary/Keyword: Network Latency

Search Result 764, Processing Time 0.026 seconds

A Study on the Implementation of KH LAN(I) (KH LAN(I) 구현에 관한 연구)

  • 유황빈;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.6
    • /
    • pp.621-633
    • /
    • 1987
  • In this paper, for the purpose of constructing LAN(Local Area Network) with Token ring type Star-wired ring method, we implemented an in board network adapter and a concentrator using microprocessor. Using cconcentrato's communication controlling function, the concentator prevents a break of communication by by-passing the fault network adapter. Because, in the data transfer period, a concentrator recognized the network adapter at transmit and receiving side to construct single by -pass line and reduces ring latency time at both sides, this method can keep a high throughput in high and low load. Being considered the result of performance evaluation for the method our study employed, high throughput can be obtained.

  • PDF

BRAIN: A bivariate data-driven approach to damage detection in multi-scale wireless sensor networks

  • Kijewski-Correa, T.;Su, S.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.415-426
    • /
    • 2009
  • This study focuses on the concept of multi-scale wireless sensor networks for damage detection in civil infrastructure systems by first over viewing the general network philosophy and attributes in the areas of data acquisition, data reduction, assessment and decision making. The data acquisition aspect includes a scalable wireless sensor network acquiring acceleration and strain data, triggered using a Restricted Input Network Activation scheme (RINAS) that extends network lifetime and reduces the size of the requisite undamaged reference pool. Major emphasis is given in this study to data reduction and assessment aspects that enable a decentralized approach operating within the hardware and power constraints of wireless sensor networks to avoid issues associated with packet loss, synchronization and latency. After over viewing various models for data reduction, the concept of a data-driven Bivariate Regressive Adaptive INdex (BRAIN) for damage detection is presented. Subsequent examples using experimental and simulated data verify two major hypotheses related to the BRAIN concept: (i) data-driven damage metrics are more robust and reliable than their counterparts and (ii) the use of heterogeneous sensing enhances overall detection capability of such data-driven damage metrics.

The Implement of Medium Access Control Protocol with Energy Efficiency in Multi-hop Sensor network (에너지 효율을 고려한 다중홉 센서망에서의 MAC 프로토콜 구현)

  • 김동일;송창안
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.793-797
    • /
    • 2004
  • Wireless sensor networks use battery-operated computing and sensing devices. And It can be expected to be deployed in an ad hoc networs. MAC is different from traditional wireless MACs such as IEEE 802.11 in almost every way. so self-configuration and power saving in sensor network are very important goals, while per-node fairness and latency are less important. In this paper, so we use a given prototype for efficient energy conservation to reduce power consumtion that is one of the important character in sensor network and compare energy consumption and collision with IEEE 802.11 MAC. finally we conclude the paper and analyze it.

The Implement of Medium Access Control Protocol with Energy Efficiency in Multi-hop Sensor network (에너지 효율을 고려한 다중홉 센서망에서의 MAC 프로토콜 구현)

  • 송창안;이우철;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.182-185
    • /
    • 2004
  • Wireless sensor networks use battery-operated computing and sensing devices. And It can be expected to be deployed in an ad hoc networs. MAC is different from traditional wireless MACs such as IEEE 802.11 in almost every way. so self-configuration and power saving in sensor network are very important goals, while per-node fairness and latency are less important. In this paper, so we use a given prototype for efficient energy conservation to reduce power consumtion that is one of the important character in sensor network and compare energy consumption and collision with IEEE 802.11 MAC. Finally we conclude the paper and analyze it.

  • PDF

CACHE:Context-aware Clustering Hierarchy and Energy efficient for MANET (CACHE:상황인식 기반의 계층적 클러스터링 알고리즘에 관한 연구)

  • Mun, Chang-min;Lee, Kang-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.571-573
    • /
    • 2009
  • Mobile Ad-hoc Network(MANET) needs efficient node management because the wireless network has energy constraints. Mobility of MANET would require the topology change frequently compared with a static network. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. Previously proposed a hybrid routing CACH prolong the network lifetime and decrease latency. However the algorithm has a problem when node density is increase. In this paper, we propose a new method that the CACHE(Context-aware Clustering Hierarchy and Energy efficient) algorithm. The proposed analysis could not only help in defining the optimum depth of hierarchy architecture CACH utilize, but also improve the problem about node density.

  • PDF

Analysis of Beam Discovery and Link setup for MXN based mmWave (mmWave기반의 MXN 빔 탐색 및 링크설정 방식 분석)

  • Baek, Seungkwon;Han, Kijun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.381-388
    • /
    • 2019
  • In this paper, we propose a new wireless transport network, which is named as Mobile Xhaul Network(MXN), that is enable to bring cost efficiency of fronthaul, midhaul and backhaul and to make easy installation of 5G Radio Access Network(RAN). For this purpose, we design XDU discovery and xhaul link setup mechanism with MXN architecture and operational procedure. Especially, in this paper, we propose various types of beam discovery mechanisms for mmWave based radio access on XDU and evaluate proposed schemes. The Simulation result shows that threshold based scheme and information based scheme have less than about 50% beam discovery latency compared to full search scheme.

IEEE 802.15.4e TSCH-mode Scheduling in Wireless Communication Networks

  • Ines Hosni;Ourida Ben boubaker
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.156-165
    • /
    • 2023
  • IEEE 802.15.4e-TSCH is recognized as a wireless industrial sensor network standard used in IoT systems. To ensure both power savings and reliable communications, the TSCH standard uses techniques including channel hopping and bandwidth reserve. In TSCH mode, scheduling is crucial because it allows sensor nodes to select when data should be delivered or received. Because a wide range of applications may necessitate energy economy and transmission dependability, we present a distributed approach that uses a cluster tree topology to forecast scheduling requirements for the following slotframe, concentrating on the Poisson model. The proposed Optimized Minimal Scheduling Function (OMSF) is interested in the details of the scheduling time intervals, something that was not supported by the Minimal Scheduling Function (MSF) proposed by the 6TSCH group. Our contribution helps to deduce the number of cells needed in the following slotframe by reducing the number of negotiation operations between the pairs of nodes in each cluster to settle on a schedule. As a result, the cluster tree network's error rate, traffic load, latency, and queue size have all decreased.

A Study on the Analysis of Security Requirements through Literature Review of Threat Factors of 5G Mobile Communication

  • DongGyun Chu;Jinho Yoo
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • The 5G is the 5th generation mobile network that provides enhanced mobile broadband, ultra-reliable & low latency communications, and massive machine-type communications. New services can be provided through multi-access edge computing, network function virtualization, and network slicing, which are key technologies in 5G mobile communication. However, these new technologies provide new attack paths and threats. In this paper, we analyzed the overall threats of 5G mobile communication through a literature review. First, defines 5G mobile communication, analyzes its features and technology architecture, and summarizes possible security issues. Addition, it presents security threats from the perspective of user devices, radio access network, multi-access edge computing, and core networks that constitute 5G mobile communication. After that, security requirements for threat factors were derived through literature analysis. The purpose of this study is to conduct a fundamental analysis to examine and assess the overall threat factors associated with 5G mobile communication. Through this, it will be possible to protect the information and assets of individuals and organizations that use 5G mobile communication technology, respond to various threat situations, and increase the overall level of 5G security.

Mobility-Aware Mesh Construction Algorithm for Low Data-Overhead Multicast Ad Hoc Routing

  • Ruiz, Pedro M.;Antonio F., Gomez-Skarmeta
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.331-342
    • /
    • 2004
  • We study the problem of controlling data overhead of mesh-based multicast ad hoc routing protocols by adaptively adding redundancy to the minimal data overhead multicast mesh as required by the network conditions. We show that the computation of the minimal data overhead multicast mesh is NP-complete, and we propose an heuristic approximation algorithm inspired on epidemic algorithms. In addition, we propose a mobility-aware and adaptive mesh construction algorithm based on a probabilistic path selection being able to adapt the reliability of the multicast mesh to the mobility of the network. Our simulation results show that the proposed approach, when implemented into ODMRP, is able to offer similar performance results and a lower average latency while reducing data overhead between 25 to 50% compared to the original ODMRP.

A Novel Parallel Viterbi Decoding Scheme for NoC-Based Software-Defined Radio System

  • Wang, Jian;Li, Yubai;Li, Huan
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.767-774
    • /
    • 2013
  • In this paper, a novel parallel Viterbi decoding scheme is proposed to decrease the decoding latency and power consumption for the software-defined radio (SDR) system. It implements a divide-and-conquer approach by first dividing a block into a series of subblocks, then performing independent Viterbi decoding for each subsequence, and finally merging the surviving subpaths into the final path. Moreover, a network-on-chip-based SDR platform is used to evaluate the performance of the proposed parallel Viterbi decoding scheme. The experiment results show that our scheme can speed up the Viterbi decoding process without increasing the BER, and it performs better than the current state-of-the-art methods.