• Title/Summary/Keyword: Network Flooding Attack

Search Result 63, Processing Time 0.027 seconds

Implementation Of DDoS Botnet Detection System On Local Area Network (근거리 통신망에서의 DDoS 봇넷 탐지 시스템 구현)

  • Huh, Jun-Ho;Hong, Myeong-Ho;Lee, JeongMin;Seo, Kyungryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.678-688
    • /
    • 2013
  • Different Different from a single attack, in DDoS Attacks, the botnets that are distributed on network initiate attacks against the target server simultaneously. In such cases, it is difficult to take an action while denying the access of packets that are regarded as DDoS since normal user's convenience should also be considered at the target server. Taking these considerations into account, the DDoS botnet detection system that can reduce the strain on the target server by detecting DDoS attacks on each user network basis, and then lets the network administrator to take actions that reduce overall scale of botnets, has been implemented in this study. The DDoS botnet detection system proposed by this study implemented the program which detects attacks based on the database composed of faults and abnormalities collected through analyzation of hourly attack traffics. The presence of attack was then determined using the threshold of current traffic calculated with the standard deviation and the mean number of packets. By converting botnet-based detection method centering around the servers that become the targets of attacks to the network based detection, it was possible to contemplate aggressive defense concept against DDoS attacks. With such measure, the network administrator can cut large scale traffics of which could be referred as the differences between DDoS and DoS attacks, in advance mitigating the scale of botnets. Furthermore, we expect to have an effect that can considerably reduce the strain imposed on the target servers and the network loads of routers in WAN communications if the traffic attacks can be blocked beforehand in the network communications under the router equipment level.

Data Mining based Denial of Service Attack Detection Scheme (데이터 마이닝을 이용한 서비스 거부 공격 탐지 기법)

  • 박호상;조은경;강용혁;엄영익
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.715-717
    • /
    • 2003
  • DoS (Denial of Service) 공격은 주로 victim 호스트에 대량의 패킷을 보내거나 비정상적인 패킷을 보냄으로써 정상 사용자가 서비스를 이음하지 못하도록 하는 공격을 의미한다. 이러한 DoS 공격을 탐지하기 위해 다양한 기법들이 개발되어 왔으나, 공격의 종류와 방법은 시간이 흐를수록 매우 다양해지고 있어 이를 탐지하는데 한계가 있다. 본 논문에서는 네트워크 패킷의 헤더정보를 감사 자료로 가지고 있는 NIDS (Network-based Intrusion Detection System)에 데이터 마이닝 기법을 적용기켜 이러한 DoS 공격을 탐지할 수 있는 기법을 제안한다. 이 기법을 이용하면 빠르고 자동화된 방법으로 DoS 공격을 탐지할 수 있다. 본 논문에서는 제안 기법을 이용하여 SYN Flooding 공격과 Teardown 공격에 대한 탐지가 가능함을 보인다.

  • PDF

A Tactical Internet Geocasting Protocol for Efficient Message Delivery (효율적인 메시지 전달을 위한 전술인터넷 지오캐스팅 프로토콜)

  • Yoon, Sun-Joong;Ko, Young-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1050-1061
    • /
    • 2009
  • The Tactical Internet(TI) managed by Infantry Brigades is used for the purpose of sharing information of Command Control and Situation Awareness. When there are more than two destinations to transmit data in the TI system, a multicasting is utilized based on pre-defined multicast groups. However even in the case when a source node needs to send some messages like weathercast and attack alarm etc to only a part of Battalion or Brigades in a specific geographical region (destination region), the current TI multicasting protocol is designed to transmit the messages to the pre-defined group or all of the Battalion/Brigade nodes, resulting in inefficiency in terms of end-to-end delay and overhead. In this paper, we propose more efficient protocol for such cases, named as "Tactical Internet Geocasting (TIG)". The proposed scheme firstly checks whether the destination region belongs to one Battalion region or more than two Battalion regions using location information, and then performs a greedy forwarding from the source node to the destination region, followed by a local flooding inside of the destination region. With performance analysis and simulations using NS-2, TIG is compared to the current TI multicasting protocol (i.e., Simplified MDP) and the LBM (Location-based Multicast). The simulation results show that the proposed TIG is more efficient than both in terms of delay and network overhead.