• Title/Summary/Keyword: Network Fault

Search Result 1,139, Processing Time 0.03 seconds

The Analysis of Protection -Characteristics and Fault-Locator Simulation on the Electrical Railway (교류전기철도 보호특성 해석 및 고장점표정 시뮬레이션)

  • 창상훈;이장무
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.262-269
    • /
    • 1998
  • In case the fault occurs in AC power supply network, protective relaying system must selectively detect line-to-line/ground fault and immediately cut off the power flow into the fault location for guaranteeing the safety of people, electric vehicle and ground installation etc. It is the most important point in power system operation to minimize the fault duration by rapid trip scheme and accurate estimation of the fault location. In this paper, we analyze the load characteristics of each vehicle, perform the fault analysis of AC power supply network using AT current-ratio method. The result shows its usefulness.

  • PDF

Application of Sensor Fault Detection Scheme Based on AANN to Sensor Network (AANN-기반 센서 고장 검출 기법의 센서 네트워크에의 적용)

  • Lee, Young-Sam;Kim, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.229-231
    • /
    • 2006
  • NLPCA(Nonlinear Principal Component Analysis) is a novel technique for multivariate data analysis, similar to the well-known method of principal component analysis. NLPCA operates by a feedforward neural network called AANN(Auto Associative Neural Network) which performs the identity mapping. In this work, a sensor fault detection system based on NLPCA is presented. To verify its applicability, simulation study on the data supplied from sensor network is executed.

  • PDF

Neural Network Based Dissolved Gas Analysis Using Gas Composition Patterns Against Fault Causes

  • J. H. Sun;Kim, K. H.;P. B. Ha
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.130-135
    • /
    • 2003
  • This study describes neural network based dissolved gas analysis using composition patterns of gas concentrations for transformer fault diagnosis. DGA samples were gathered from related literatures and classified into six types of faults and then a neural network was trained using the DGA samples. Diagnosis tests were performed by the trained neural network with DGA samples of serviced transformers, fault causes of which were identified by actual inspection. Diagnosis results by the neural network were in good agreement with actual faults.

(Fault Detection and Isolation of the Nonlinear systems Using Neural Network-Based Multi-Fault Models) (신경회로망기반 다중고장모델에 의한 비선형시스템의 고장감지와 분류)

  • Lee, In-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.42-50
    • /
    • 2002
  • In this paper, we propose an FDI(fault detection and isolation) method using neural network-based multi-fault models to detect and isolate faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.

KOHONEN NETWORK BASED FAULT DIAGNOSIS AND CONDITION MONITORING OF PRE-ENGAGED STARTER MOTORS

  • BAY O. F.;BAYIR R.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.341-350
    • /
    • 2005
  • In this study, fault diagnosis and monitoring of serial wound pre-engaged starter motors have been carried out. Starter motors are DC motors that enable internal combustion engine (ICE) to run. In case of breakdown of a starter motor, internal combustion engine can not be worked. Starter motors have vital importance on internal combustion engines. Kohonen network based fault diagnosis system is proposed for fault diagnosis and monitoring of starter motors. A graphical user interface (GUI) software has been developed by using Visual Basic 6.0 for fault diagnosis. Six faults, seen in starter motors, have been diagnosed successfully by using the developed fault diagnosis system. GUI software makes it possible to diagnose the faults in starter motors before they occur by keeping fault records of past occurrences.

Fault Type Classification and Fault Distance Estimation for High Speed Relaying Using Neural Networks in Power Transmission Systems (신경회로망을 이용한 송전계통의 고속계전기용 고장유형분류 및 고장거리 추정방법)

  • Lee, H.S.;Yoon, J.Y.;Park, J.H.;Jang, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.808-810
    • /
    • 1996
  • In this paper, neural network, which has learning capability, is used for fault type classification and fault section estimation for high speed relaying. The potential of the neural network approach is demonstrated by simulation using ATP. The instantaneous values of voltages and currents are used the inputs of neural networks. This approach determines the fault section directly. In this paper, back-propagation network(BPN) is used for fault type classification and fault section estimation and can use for high speed relaying because it determines fault section within a few msec.

  • PDF

Fault Diagnosis for a System Using Classified Pattern and Neural Networks (분류패턴과 신경망을 이용한 시스템의 고장진단)

  • Lee, Jin-Ha;Park, Seong-Wook;Seo, Bo-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.12
    • /
    • pp.643-650
    • /
    • 2000
  • Using neural network approach, the diagnosis of faults in industrial process that requires observing multiple data simultaneously are studied. Two-stage diagnosis is proposed to analyze system faults. By using neural network, the first stage detects the dynamic trend of each normalized date patterns by comparing a proposed pattern. Instead of using neural network, the difference between stored fault pattern and real time data is used for fault diagnosis in the second stage. This method reduces the amount of calculation and saves storing space. Also, we dealt with unknown faults by normalizing the data and calculating the difference between the value of steady state and the data in case of fault. A model of tank reactor is given to verify that the proposed method is useful and effective to noise.

  • PDF

Ubiquitous Networking based Intelligent Monitoring and Fault Diagnosis Approach for Photovoltaic Generator Systems (태양광 발전 시스템을 위한 유비쿼터스 네트워킹 기반 지능형 모니터링 및 고장진단 기술)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1673-1679
    • /
    • 2010
  • A photovoltaic (PV) generator is significantly regarded as one important alternative of renewable energy systems recently. Fault detection and diagnosis of engineering dynamic systems is a fundamental issue to timely prevent unexpected damages in industry fields. This paper presents an intelligent monitoring approach and fault detection technique for PV generator systems by means of artificial neural network and statistical signal detection theory. We devise a multi-Fourier neural network model for representing dynamics of PV systems and apply a general likelihood ratio test (GLRT) approach for investigating our decision making algorithm in fault detection and diagnosis. We make use of a test-bed of ubiquitous sensor network (USN) based PV monitoring systems for testing our proposed fault detection methodology. Lastly, a real-time experiment is accomplished for demonstrating its reliability and practicability.

A Fault Section Detection Algorithm to use ZCT in Ungrounded Distribution Network (ZCT를 이용한 비접지계통에서의 사고유형별 사고구간 검출 알고리즘)

  • Lim, Il-Hyung;Choi, Myeon-Song;Lee, Seung-Jae;An, Tae-Poong;Yun, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.107_108
    • /
    • 2009
  • In this paper, a fault section detection algorithm to be considered variety measurement devices is proposed in ungrounded diatribution network. Ungrounded network is different from grounded netork. It's that a fault current doesn't generate when a single grounded fault by characteristic of ungrounded network. So, a fault section detection is very difficult. Thus, in this paper, a fault section detection method is proposed by data from variety measurement devices. The method is proved by matlap simulink.

  • PDF

Condition Monitoring of Check Valve Using Neural Network

  • Lee, Seung-Youn;Jeon, Jeong-Seob;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2198-2202
    • /
    • 2005
  • In this paper we have presented a condition monitoring method of check valve using neural network. The acoustic emission sensor was used to acquire the condition signals of check valve in direct vessel injection (DVI) test loop. The acquired sensor signal pass through a signal conditioning which are consisted of steps; rejection of background noise, amplification, analogue to digital conversion, extract of feature points. The extracted feature points which represent the condition of check valve was utilized input values of fault diagnosis algorithms using pre-learned neural network. The fault diagnosis algorithm proceeds fault detection, fault isolation and fault identification within limited ranges. The developed algorithm enables timely diagnosis of failure of check valve’s degradation and service aging so that maintenance and replacement could be preformed prior to loss of the safety function. The overall process has been experimented and the results are given to show its effectiveness.

  • PDF