• Title/Summary/Keyword: Network Defense

Search Result 910, Processing Time 0.022 seconds

Data Modeling for Cyber Security of IoT in Artificial Intelligence Technology (인공지능기술의 IoT 통합보안관제를 위한 데이터모델링)

  • Oh, Young-Taek;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.57-65
    • /
    • 2021
  • A hyper-connected intelligence information society is emerging that creates new value by converging IoT, AI, and Bigdata, which are new technologies of the fourth industrial revolution, in all industrial fields. Everything is connected to the network and data is exploding, and artificial intelligence can learn on its own and even intellectual judgment functions are possible. In particular, the Internet of Things provides a new communication environment that can be connected to anything, anytime, anywhere, enabling super-connections where everything is connected. Artificial intelligence technology is implemented so that computers can execute human perceptions, learning, reasoning, and natural language processing. Artificial intelligence is developing advanced technologies such as machine learning, deep learning, natural language processing, voice recognition, and visual recognition, and includes software, machine learning, and cloud technologies specialized in various applications such as safety, medical, defense, finance, and welfare. Through this, it is utilized in various fields throughout the industry to provide human convenience and new values. However, on the contrary, it is time to respond as intelligent and sophisticated cyber threats are increasing and accompanied by potential adverse functions such as securing the technical safety of new technologies. In this paper, we propose a new data modeling method to enable IoT integrated security control by utilizing artificial intelligence technology as a way to solve these adverse functions.

Study on security framework for cyber-hacking control facilities (제어시설 사이버공격 대응을 위한 사이버보안 프레임워크 (Framework) 연구)

  • Lee, Sang-Do;Shin, Yongtae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.4
    • /
    • pp.285-296
    • /
    • 2018
  • Among many hacking attempts carried out in the past few years, the cyber-attacks that could have caused a national-level disaster were the attacks against nuclear facilities including nuclear power plants. The most typical one was the Stuxnet attack against Iranian nuclear facility and the cyber threat targeting one of the facilities operated by Korea Hydro and Nuclear Power Co., Ltd (Republic of Korea; ROK). Although the latter was just a threat, it made many Korean people anxious while the former showed that the operation of nuclear plant can be actually stopped by direct cyber-attacks. After these incidents, the possibility of cyber-attacks against industrial control systems has become a reality and the security for these systems has been tightened based on the idea that the operations by network-isolated systems are no longer safe from the cyber terrorism. The ROK government has established a realistic control systems defense concept and in the US, the relevant authorities have set up several security frameworks to prepare for the threats. This paper presented various cyber security attack cases and their scenarios against control systems, along with the analysis of countermeasures for them. Though this task, we attempt to identify the items that need to be considered when designing a domestic security framework to improve security and secure stability.

Detecting Adversarial Examples Using Edge-based Classification

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.67-76
    • /
    • 2023
  • Although deep learning models are making innovative achievements in the field of computer vision, the problem of vulnerability to adversarial examples continues to be raised. Adversarial examples are attack methods that inject fine noise into images to induce misclassification, which can pose a serious threat to the application of deep learning models in the real world. In this paper, we propose a model that detects adversarial examples using differences in predictive values between edge-learned classification models and underlying classification models. The simple process of extracting the edges of the objects and reflecting them in learning can increase the robustness of the classification model, and economical and efficient detection is possible by detecting adversarial examples through differences in predictions between models. In our experiments, the general model showed accuracy of {49.9%, 29.84%, 18.46%, 4.95%, 3.36%} for adversarial examples (eps={0.02, 0.05, 0.1, 0.2, 0.3}), whereas the Canny edge model showed accuracy of {82.58%, 65.96%, 46.71%, 24.94%, 13.41%} and other edge models showed a similar level of accuracy also, indicating that the edge model was more robust against adversarial examples. In addition, adversarial example detection using differences in predictions between models revealed detection rates of {85.47%, 84.64%, 91.44%, 95.47%, and 87.61%} for each epsilon-specific adversarial example. It is expected that this study will contribute to improving the reliability of deep learning models in related research and application industries such as medical, autonomous driving, security, and national defense.

A Study on the Efficacy of Edge-Based Adversarial Example Detection Model: Across Various Adversarial Algorithms

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.31-41
    • /
    • 2024
  • Deep learning models show excellent performance in tasks such as image classification and object detection in the field of computer vision, and are used in various ways in actual industrial sites. Recently, research on improving robustness has been actively conducted, along with pointing out that this deep learning model is vulnerable to hostile examples. A hostile example is an image in which small noise is added to induce misclassification, and can pose a significant threat when applying a deep learning model to a real environment. In this paper, we tried to confirm the robustness of the edge-learning classification model and the performance of the adversarial example detection model using it for adversarial examples of various algorithms. As a result of robustness experiments, the basic classification model showed about 17% accuracy for the FGSM algorithm, while the edge-learning models maintained accuracy in the 60-70% range, and the basic classification model showed accuracy in the 0-1% range for the PGD/DeepFool/CW algorithm, while the edge-learning models maintained accuracy in 80-90%. As a result of the adversarial example detection experiment, a high detection rate of 91-95% was confirmed for all algorithms of FGSM/PGD/DeepFool/CW. By presenting the possibility of defending against various hostile algorithms through this study, it is expected to improve the safety and reliability of deep learning models in various industries using computer vision.

Data Mining Approaches for DDoS Attack Detection (분산 서비스거부 공격 탐지를 위한 데이터 마이닝 기법)

  • Kim, Mi-Hui;Na, Hyun-Jung;Chae, Ki-Joon;Bang, Hyo-Chan;Na, Jung-Chan
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.279-290
    • /
    • 2005
  • Recently, as the serious damage caused by DDoS attacks increases, the rapid detection and the proper response mechanisms are urgent. However, existing security mechanisms do not effectively defend against these attacks, or the defense capability of some mechanisms is only limited to specific DDoS attacks. In this paper, we propose a detection architecture against DDoS attack using data mining technology that can classify the latest types of DDoS attack, and can detect the modification of existing attacks as well as the novel attacks. This architecture consists of a Misuse Detection Module modeling to classify the existing attacks, and an Anomaly Detection Module modeling to detect the novel attacks. And it utilizes the off-line generated models in order to detect the DDoS attack using the real-time traffic. We gathered the NetFlow data generated at an access router of our network in order to model the real network traffic and test it. The NetFlow provides the useful flow-based statistical information without tremendous preprocessing. Also, we mounted the well-known DDoS attack tools to gather the attack traffic. And then, our experimental results show that our approach can provide the outstanding performance against existing attacks, and provide the possibility of detection against the novel attack.

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

Construction and Application of Intelligent Decision Support System through Defense Ontology - Application example of Air Force Logistics Situation Management System (국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례)

  • Jo, Wongi;Kim, Hak-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.77-97
    • /
    • 2019
  • The large amount of data that emerges from the initial connection environment of the Fourth Industrial Revolution is a major factor that distinguishes the Fourth Industrial Revolution from the existing production environment. This environment has two-sided features that allow it to produce data while using it. And the data produced so produces another value. Due to the massive scale of data, future information systems need to process more data in terms of quantities than existing information systems. In addition, in terms of quality, only a large amount of data, Ability is required. In a small-scale information system, it is possible for a person to accurately understand the system and obtain the necessary information, but in a variety of complex systems where it is difficult to understand the system accurately, it becomes increasingly difficult to acquire the desired information. In other words, more accurate processing of large amounts of data has become a basic condition for future information systems. This problem related to the efficient performance of the information system can be solved by building a semantic web which enables various information processing by expressing the collected data as an ontology that can be understood by not only people but also computers. For example, as in most other organizations, IT has been introduced in the military, and most of the work has been done through information systems. Currently, most of the work is done through information systems. As existing systems contain increasingly large amounts of data, efforts are needed to make the system easier to use through its data utilization. An ontology-based system has a large data semantic network through connection with other systems, and has a wide range of databases that can be utilized, and has the advantage of searching more precisely and quickly through relationships between predefined concepts. In this paper, we propose a defense ontology as a method for effective data management and decision support. In order to judge the applicability and effectiveness of the actual system, we reconstructed the existing air force munitions situation management system as an ontology based system. It is a system constructed to strengthen management and control of logistics situation of commanders and practitioners by providing real - time information on maintenance and distribution situation as it becomes difficult to use complicated logistics information system with large amount of data. Although it is a method to take pre-specified necessary information from the existing logistics system and display it as a web page, it is also difficult to confirm this system except for a few specified items in advance, and it is also time-consuming to extend the additional function if necessary And it is a system composed of category type without search function. Therefore, it has a disadvantage that it can be easily utilized only when the system is well known as in the existing system. The ontology-based logistics situation management system is designed to provide the intuitive visualization of the complex information of the existing logistics information system through the ontology. In order to construct the logistics situation management system through the ontology, And the useful functions such as performance - based logistics support contract management and component dictionary are further identified and included in the ontology. In order to confirm whether the constructed ontology can be used for decision support, it is necessary to implement a meaningful analysis function such as calculation of the utilization rate of the aircraft, inquiry about performance-based military contract. Especially, in contrast to building ontology database in ontology study in the past, in this study, time series data which change value according to time such as the state of aircraft by date are constructed by ontology, and through the constructed ontology, It is confirmed that it is possible to calculate the utilization rate based on various criteria as well as the computable utilization rate. In addition, the data related to performance-based logistics contracts introduced as a new maintenance method of aircraft and other munitions can be inquired into various contents, and it is easy to calculate performance indexes used in performance-based logistics contract through reasoning and functions. Of course, we propose a new performance index that complements the limitations of the currently applied performance indicators, and calculate it through the ontology, confirming the possibility of using the constructed ontology. Finally, it is possible to calculate the failure rate or reliability of each component, including MTBF data of the selected fault-tolerant item based on the actual part consumption performance. The reliability of the mission and the reliability of the system are calculated. In order to confirm the usability of the constructed ontology-based logistics situation management system, the proposed system through the Technology Acceptance Model (TAM), which is a representative model for measuring the acceptability of the technology, is more useful and convenient than the existing system.

A Study on the Application of Block Chain Technology on EVMS (EVMS 업무의 블록체인 기술 적용 방안 연구)

  • Kim, Il-Han;Kwon, Sun-Dong
    • Management & Information Systems Review
    • /
    • v.39 no.2
    • /
    • pp.39-60
    • /
    • 2020
  • Block chain technology is one of the core elements for realizing the 4th industrial revolution, and many efforts have been made by government and companies to provide services based on block chain technology. In this study we analyzed the benefits of block chain technology for EVMS and designed EVMS block chain platform with increased data security and work efficiency for project management data, which are important assets in monitoring progress, foreseeing future events, and managing post-completion. We did the case studies on the benefits of block chain technology and then conducted the survey study on security, reliability, and efficiency of block chain technology, targeting 18 block chain experts and project developers. And then, we interviewed EVMS system operator on the compatibility between block chain technology and EVM Systems. The result of the case studies showed that block chain technology can be applied to financial, logistic, medical, and public services to simplify the insurance claim process and to improve reliability by distributing transaction data storage and applying security·encryption features. Also, our research on the characteristics and necessity of block chain technology in EVMS revealed the improvability of security, reliability, and efficiency of management and distribution of EVMS data. Finally, we designed a network model, a block structure, and a consensus algorithm model and combined them to construct a conceptual block chain model for EVM system. This study has the following contribution. First, we reviewed that the block chain technology is suitable for application in the defense sector and proposed a conceptual model. Second, the effect that can be obtained by applying block chain technology to EVMS was derived, and the possibility of improving the existing business process was derived.

An Empirical Study of Discontinuous Use Intention on SNS: From a Perspective of Society Comparison Theory (사회비교이론 관점에서 살펴본 SNS 이용중단 의도)

  • Cha, Kyung Jin;Lee, Eun Mok
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.3
    • /
    • pp.59-77
    • /
    • 2015
  • Social networking sites (SNS), such as Facebook, provide abundant social comparison opportunities. Given the widespread use of SNSs, the purpose of the present study was to examine the impact of exposure to social media-based social comparison on user's negative emotions and discontinuous use intention on SNS. We present evidence that under the use of SNS, social comparison activities diverge into three patterns, with explicit self-evaluation desire made against similar target (lateral comparison), self-defense desire made against less fortunate target (downward comparison), and self-enhancement desire made with more fortunate target (upward comparison). Such social comparison processes frequently arise, as people are increasingly using on SNSs, the downward contacts ameliorating self-esteem with positive emotions, but the upward contacts and standard contacts with lateral status enabling a person to compare his or her situation with others and simultaneously increase negative emotions due to its differences with others. In other words, as people increasingly relying on SNSs for a variety of everyday tasks, they risk overexposure to upward or standard social comparison information that may have a cumulative detrimental impact on future intention on SNS use. This study with survey with 209 SNS users found that these negative emotions lead to negative fatigue (attitude) and then discontinuous use intention (behavior) on SNS. Our findings are among the first to explicitly examine discontinuous use intention on SNS using social comparison theory and our results are consistent with those of past research showing that upward social comparisons can be detrimental.

Immune Cells Are Differentially Affected by SARS-CoV-2 Viral Loads in K18-hACE2 Mice

  • Jung Ah Kim;Sung-Hee Kim;Jeong Jin Kim;Hyuna Noh;Su-bin Lee;Haengdueng Jeong;Jiseon Kim;Donghun Jeon;Jung Seon Seo;Dain On;Suhyeon Yoon;Sang Gyu Lee;Youn Woo Lee;Hui Jeong Jang;In Ho Park;Jooyeon Oh;Sang-Hyuk Seok;Yu Jin Lee;Seung-Min Hong;Se-Hee An;Joon-Yong Bae;Jung-ah Choi;Seo Yeon Kim;Young Been Kim;Ji-Yeon Hwang;Hyo-Jung Lee;Hong Bin Kim;Dae Gwin Jeong;Daesub Song;Manki Song;Man-Seong Park;Kang-Seuk Choi;Jun Won Park;Jun-Won Yun;Jeon-Soo Shin;Ho-Young Lee;Ho-Keun Kwon;Jun-Young Seo;Ki Taek Nam;Heon Yung Gee;Je Kyung Seong
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.7.1-7.19
    • /
    • 2024
  • Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virus-infected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105 PFU; however, 1×12 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.