• 제목/요약/키워드: Network Art

검색결과 761건 처리시간 0.027초

웨이브렛 계수에 근거한 Fuzzy-ART 네트워크를 이용한 PVC 분류 (Classification of the PVC Using The Fuzzy-ART Network Based on Wavelet Coefficient)

  • 박광리;이경중;이윤선;윤형로
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권4호
    • /
    • pp.435-442
    • /
    • 1999
  • 본 연구에서는 PVC를 분류하기 위하여 웨이브렛 계수를 기반으로 하는 fuzzy-ART 네트워크를 설계하였다. 설계된 네트워크는 feature를 추출하는 부분과 fuzzy-ART 네트워크를 학습시키는 부분으로 구성된다. 우선 feature의 문턱치 구간을 설정하기 위하여 심전도 신호의 QRS를 검출하였고, 검출된 QRS는 Haar 웨이브렛을 이용한 웨이브렛 변환에 의해 주파수 분할하였다. 분할된 주파수 중에서 입력 feature를 추출하기 위하여 저주파 영역의 6번째 계수(D6)만을 선택하였다. D6신호는 입력 feature를 구성하기 위한 문턱치를 적용하여 fuzzy-ART 네트워크의 2진수 입력 feature로 전환하였고, PVC를 분류하기 위하여 fuzzy-ART네트워크를 학습시켰다. 본 연구의 성능을 평가하기 위하여 PVC가 포함된 MIT/BIH 데이터 베이스가 사용되었으며, fuzzy-ART 네트워크의 분류성능은 96.25%이었다.

  • PDF

선형예측계수에 근거한 ART 네트워크를 이용한 심전도 신호 분류 (Classification of the ECG Beat Using ART Network Based on Linear Prediction Coefficient)

  • 박광리;이경중
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.228-231
    • /
    • 1997
  • In this paper, we designed an ART(Adaptive Resonance Theory) network based on LPC(Linear Prediction Coefficient) for classification of PVB (Premature Ventricular Beat: PVC, LBBB, RBBB). The procedure of proposed system consists of the error calculation, feature generation and processing of the ART network. The error is calculated after processing by linear prediction algorithm and the features of ART network or classification are obtained from the binary ata determined by threshold method. In conclusion, ART network has good performance in classification of PVB.

  • PDF

NFT 아트의 미래와 전망 : 행위자네트워크 이론을 중심으로 (The Future and Prospects of NFT Art : On the basis of Actor-Network Theory)

  • 천미림;김홍규
    • 문화기술의 융합
    • /
    • 제8권4호
    • /
    • pp.397-405
    • /
    • 2022
  • NFT 아트는 NFT 기술을 바탕으로 형성된 새로운 미술형태로써 기존 미술계와 미술시장에서 큰 관심을 끌고 있다. 따라서 NFT 아트가 새로운 미술의 영역으로 자리매김할 수 있는가에 대한 분석이 요구된다. 따라서 NFT 아트의 형성과 발전 과정을 과학기술학(Science and Technology Studies)의 행위자네트워크 이론(Actor-Network Theory)의 관점에서 분석하고 대표적인 사례로 NFT 아티스트 '비플(beeple)'의 사례를 조망한다. 또한 과학기술학 연구자인 그레이엄 하먼(Graham Harman)의 미학을 바탕으로 NFT 아트의 예술적 가치와 전통 미술 네트워크와의 관계를 논의한다. 특히 NFT 프로젝트 '크립토펑크(Crypto punks)'와 새로운 미술장르를 표방하는 '펑키즘(PUNKISM)' 사례를 통해 NFT 아트의 미래와 장르적 지속가능성을 분석한다. 행위자네트워크 이론으로 NFT 아트를 분석함으로써 기술적, 미적, 철학적 질문들을 가시화하고 새로운 미술장르로써의 긍정적인 전망을 제시하고자 한다.

Recognition of Passports using CDM Masking and ART2-based Hybrid Network

  • Kim, Kwang-Baek;Cho, Jae-Hyun;Woo, Young-Woon
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.213-217
    • /
    • 2008
  • This paper proposes a novel method for the recognition of passports based on the CDM(Conditional Dilation Morphology) masking and the ART2-based RBF neural networks. For the extraction of individual codes for recognizing, this paper targets code sequence blocks including individual codes by applying Sobel masking, horizontal smearing and a contour tracking algorithm on the passport image. Individual codes are recovered and extracted from the binarized areas by applying CDM masking and vertical smearing. This paper also proposes an ART2-based hybrid network that adapts the ART2 network for the middle layer. This network is applied to the recognition of individual codes. The experiment results showed that the proposed method has superior in performance in the recognition of passport.

HIERARCHICAL CLUSTER ANALYSIS by arboART NEURAL NETWORKS and its APPLICATION to KANSEI EVALUATION DATA ANALYSIS

  • Ishihara, Shigekazu;Ishihara, Keiko;Nagamachi, Mitsuo
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2002년도 춘계학술대회 논문집
    • /
    • pp.195-200
    • /
    • 2002
  • ART (Adaptive Resonance Theory [1]) neural network and its variations perform non-hierarchical clustering by unsupervised learning. We propose a scheme "arboART" for hierarchical clustering by using several ART1.5-SSS networks. It classifies multidimensional vectors as a cluster tree, and finds features of clusters. The Basic idea of arboART is to use the prototype formed in an ART network as an input to other ART network that has looser distance criteria (Ishihara, et al., [2,3]). By sending prototype vectors made by ART to one after another, many small categories are combined into larger and more generalized categories. We can draw a dendrogram using classification records of sample and categories. We have confirmed its ability using standard test data commonly used in pattern recognition community. The clustering result is better than traditional computing methods, on separation of outliers, smaller error (diameter) of clusters and causes no chaining. This methodology is applied to Kansei evaluation experiment data analysis.

  • PDF

모듈구조 mART 신경망을 이용한 3차원 표적 피쳐맵의 최적화 (Optimization of 3D target feature-map using modular mART neural network)

  • 차진우;류충상;서춘원;김은수
    • 전자공학회논문지C
    • /
    • 제35C권2호
    • /
    • pp.71-79
    • /
    • 1998
  • In this paper, we propose a new mART(modified ART) neural network by combining the winner neuron definition method of SOM(self-organizing map) and the real-time adaptive clustering function of ART(adaptive resonance theory) and construct it in a modular structure, for the purpose of organizing the feature maps of three dimensional targets. Being constructed in a modular structure, the proposed modular mART can effectively prevent the clusters from representing multiple classes and can be trained to organze two dimensional distortion invariant feature maps so as to recognize targets with three dimensional distortion. We also present the recognition result and self-organization perfdormance of the proposed modular mART neural network after carried out some experiments with 14 tank and fighter target models.

  • PDF

Enhanced RBF Network by Using Auto- Turning Method of Learning Rate, Momentum and ART2

  • Kim, Kwang-baek;Moon, Jung-wook
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.84-87
    • /
    • 2003
  • This paper proposes the enhanced REF network, which arbitrates learning rate and momentum dynamically by using the fuzzy system, to arbitrate the connected weight effectively between the middle layer of REF network and the output layer of REF network. ART2 is applied to as the learning structure between the input layer and the middle layer and the proposed auto-turning method of arbitrating the learning rate as the method of arbitrating the connected weight between the middle layer and the output layer. The enhancement of proposed method in terms of learning speed and convergence is verified as a result of comparing it with the conventional delta-bar-delta algorithm and the REF network on the basis of the ART2 to evaluate the efficiency of learning of the proposed method.

  • PDF

개선된 신경망 알고리즘을 이용한 영상 클러스터링 (Image Clustering using Improved Neural Network Algorithm)

  • 박상성;이만희;유헌우;문호석;장동식
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.597-603
    • /
    • 2004
  • In retrieving large database of image data, the clustering is essential for fast retrieval. However, it is difficult to cluster a number of image data adequately. Moreover, current retrieval methods using similarities are uncertain of retrieval accuracy and take much retrieving time. In this paper, a suggested image retrieval system combines Fuzzy ART neural network algorithm to reinforce defects and to support them efficiently. This image retrieval system takes color and texture as specific feature required in retrieval system and normalizes each of them. We adapt Fuzzy ART algorithm as neural network which receive normalized input-vector and propose improved Fuzzy ART algorithm. The result of implementation with 200 image data shows approximately retrieval ratio of 83%.

공구파단 검출을 위한 ART2 신경회로망 (ART1 Neural Network for the Detection of Tool Breakage)

  • 고태조;김희술;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.451-456
    • /
    • 1995
  • This study investigates the feasibility of the real time detection of tool breadage in face milling operation. The proposed methodology using an ART2 neural network overcomes a cumbersome task in terms of the learning or determining a threshold value. The features taken in the researchare the AR parameters modelled from a RLS, and those are proven to be good features for tool breakage from experiments. From the results of the off line application, we can conclude that an ART2 neural network can be well applied to the clustering of tool states in real time regardless of the unsupervised learning.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF