• Title/Summary/Keyword: Nephrin

Search Result 9, Processing Time 0.018 seconds

Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex

  • Zha, Dongqing;Chen, Cheng;Liang, Wei;Chen, Xinghua;Ma, Tean;Yang, Hongxia;van Goor, Harry;Ding, Guohua
    • BMB Reports
    • /
    • v.46 no.4
    • /
    • pp.230-235
    • /
    • 2013
  • Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-${\alpha}$-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin phosphorylation influenced cytoskeleton and cell adhesion in podocytes by regulating the PIP complex. The nephrin phosphorylation, PIP complex formation, and F-actin in Wistar rats intraperitoneally injected with puromycin aminonucleoside were gradually decreased but increased with time, coinciding with the recovery from glomerular/podocyte injury and proteinuria. In cultured podocytes, PIP complex knockdown resulted in cytoskeleton reorganization and decreased cell adhesion and spreading. Nephrin and its phosphorylation were unaffected after PIP complex knockdown. Furthermore, inhibition of nephrin phosphorylation suppressed PIP complex expression, disorganized podocyte cytoskeleton, and decreased cell adhesion and spreading. These findings indicate that alterations in nephrin phosphorylation disorganize podocyte cytoskeleton and decrease cell adhesion through a PIP complex-dependent mechanism.

The Changes of Slit Diaphragm Molecules After Using Sirolimus (Sirolimus 사용 후 사구체 기저막 세극막 관련 분자의 변화)

  • Choi, Jung-Youn;Han, Gi-Dong;Kim, Yong-Jin;Park, Yong-Hoon
    • Childhood Kidney Diseases
    • /
    • v.14 no.2
    • /
    • pp.143-153
    • /
    • 2010
  • Purpose: Recently, massive proteinuria has been observed in some transplant patients after switching cyclosporine A (CsA) to sirolimus. To evaluate the pathogenesis of sirolimus-associated proteinuria, we investigated the early changes in slit diaphragm molecules by various administrative conditions of sirolimus and CsA. Methods: In vitro-Mouse podocytes were incubated with buffer (C), sirolimus ($10\;{\mu}g/mL$) after CsA ($10\;{\mu}g/mL$) (C-S), sirolimus only (S) and CsA and sirolimus simultaneously (C+S) for 12, 24, and 48 hours. In vivo- twenty four SPF female Wistar rats were divided into 4 groups buffer (C), sirolimus after 2 weeks of CsA (C-S), sirolimus only (S) and CsA and sirolimus simultaneously (C+S). All groups were treated by intraperitoneal injection every other day for 4 weeks (CsA: 25 mg/kg, sirolimus: 0.5 mg/kg). The changes in mRNA of slit diaphragm molecules were examined by RT-PCR. Results: The mRNA of nephrin was significantly decreased in group C-S and C+S in vitro. In vivo, the mRNA of nephrin in all groups using sirolimus and the mRNA of podocin in group C-S and C+S were decreased. Microscopically, group C-S and C+S showed small vacuolization and calcification in proximal tubular epithelial cells. Immunohistochemistry using nephrin and podocin antibodies did not show remarkable decrease of staining along the glomerular capillaries. Electron-microscopically, focal fusion of foot processes was seen in group C-S and C+S. Conclusion: This study suggests the decrease of slit diaphragm molecules (nephrin and podocin) in podocyte may be one of the causes of sirolimus associated proteinuria, and podocyte injury by sirolimus may need a primary hit by CsA to develop the proteinuria.

Melittin induces autophagy to alleviate chronic renal failure in 5/6-nephrectomized rats and angiotensin II-induced damage in podocytes

  • Yufan Zhang;Huaping Xu;Hongwei Qiao;Ya Zhao;Minmin Jiang
    • Nutrition Research and Practice
    • /
    • v.18 no.2
    • /
    • pp.210-222
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Chronic renal failure (CRF) is a complex pathological condition that lacks a cure. Certain Chinese medicines, such as melittin, a major component in bee venom, have shown efficacy in treating CRF patients. On the other hand, the mechanisms underlying the therapeutic effects of melittin are unclear. MATERIALS/METHODS: A 5/6 nephrectomy model (5/6 Nx) of renal failure was established on rats for in vivo assays, and mouse podocyte clone 5 (MPC5) mouse podocyte cells were treated with angiotensin II (AngII) to establish an in vitro podocyte damage model. The 24-h urine protein, serum creatinine, and blood urea nitrogen levels were evaluated after one, 2, and 4 weeks. Hematoxylin and eosin staining, Masson staining, and periodic acid-Schiff staining were used to examine the pathological changes in kidney tissues. A cell counting kit 8 assay was used to assess the cell viability. Reverse transcription polymerase chain reaction and Western blot were used to assess the mRNA and protein levels in the cells, respectively. RESULTS: In the rat 5/6 Nx, melittin reduced the 24-h urinary protein excretion and the serum creatinine and blood urea nitrogen levels. Furthermore, the renal pathology was improved in the melittin-treated 5/6 Nx rats. Melittin promoted podocin, nephrin, Beclin 1, and the LC3II/LC3I ratio and inhibited phosphorylated mammalian target of rapamycin (mTOR)/mTOR in 5/6 Nx-induced rats and AngII-induced MPC5 mouse podocyte cells. Moreover, inhibiting autophagy with 3-MA weakened the effects of melittin on podocin, nephrin, and the LC3II/LC3I ratio in podocytes. CONCLUSION: Melittin may offer protection against kidney injury, probably by regulating podocyte autophagy. These results provide the theoretical basis for applying melittin in CRF therapy.

Protective Effects of Prunella Vulgaris on Glomerular Injury in Streptozotocin-Induced Diabetic Rats (하고초 추출물의 streptozotocin 유발 당뇨 랫트 사구체 손상 개선 효과)

  • Yoon, Jung Joo;Park, Ji Hun;Jeong, Da Hye;Han, Byung Hyuk;Choi, Eun Sik;Lee, Yun Jung;Kang, Dae Gill;Lee, Ho Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.5
    • /
    • pp.264-269
    • /
    • 2017
  • Prunella vulgaris, well-known traditional medicinal plant, is used for the cure of abscess, scrofula, hypertension and urinary diseases. Diabetic nephropathy is the most common cause of end-stage renal disease. The pathological characteristics of diabetic nephropathy are glomerular and tubular basement membrane thickening. The aim of the present study was to evaluate the effect of Prunella vulgaris, on diabetic glomerular injury in streptozotocin-induced diabetes rats. Diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (STZ; 45 mg/kg) and confirmed by random glucose level higher than ${\leq}300mg/dL$. The experimental rats were divided into five groups: control group (Male SD rats), STZ group (Male SD rats injected STZ), Aminoguanidine group (Male SD rats injected STZ + AG 100 mg/kg/day), Low dose group (Male SD rats injected STZ + APV 100 mg/kg/day), High dose group (Male SD rats injected STZ + APV 300 mg/kg/day). AG or APVs were administered once a day for 8 weeks. Body weight and food/water intake were measured every four weeks. At the end of study, the kidneys were collected and cut into pieces for immunohistochemistry and western blot analysis. Our study showed that body weight and water/food intake were no significant differences between untreated STZ-induced diabetic rat and APV treated-STZ rat. However, phosphorylation of receptor-regulated Smads (Smad3) was significantly decreased in APV treated-STZ rat as compared with the diabetic group. In addition, APV was improved nephrin level in kidney tissue. Therefore, we suggest that APV has a protective effect against STZ-induced diabetic glomerular injury.

Hwanggeum-tang Water Extracts Suppress TGF-β1 Induced EMT in Podocyte (황금탕의 족돌기세포에서의 EMT 억제 효능)

  • Shin, Sang Woo;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells lose their characters and acquire the properties of mesenchymal cells. EMT has been reported to exert an essential role in embryonic development. Recently, EMT has emerged as a pivotal mechanism in the metastasis of cancer and the fibrosis of chronic diseases. In particular, EMT is drawing attention as a mechanism of renal fibrosis in chronic kidney diseases such as diabetic nephropathy. In this study, we developed an EMT model by treating TGF-β1 on the podocytes, which play a key role in the renal glomerular filtration. This study explored the effects of Hwanggeum-tang (HGT) recorded in Dongeuibogam as being able to be used for the treatment of Sogal whose concept had been applied to Diabetes Mellitus (DM), on the TGF-β1-induced podocyte EMT. HGT suppressed the expression of vimentin and α-SMA, the EMT marker, in the human podocytes stimulated by TGF-β1. However, HGT increased the expression of ZO-1 and nephrin. Interestingly, HGT selectively inhibited the mTOR pathway rather than the classical Smad pathway. HGT also activated the AMPK signaling. HGT's inhibitory effect on the podocyte EMT through regulation of the mTOR pathway was achieved through the activation of AMPK, which was confirmed by comparison with cells treated with compound C (CC), an inhibitor of AMPK signaling. In conclusion, HGT can be applied to the renal fibrosis by preventing TGF-β1-induced EMT of podocytes through AMPK activation and mTOR inhibition.

Reciprocal regulation of SIRT1 and AMPK by Ginsenoside compound K impedes the conversion from plasma cells to mitigate for podocyte injury in MRL/lpr mice in a B cell-specific manner

  • Ziyu Song;Meng Jin;Shenglong Wang;Yanzuo Wu;Qi Huang;Wangda Xu;Yongsheng Fan;Fengyuan Tian
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.190-201
    • /
    • 2024
  • Background: Deposition of immune complexes drives podocyte injury acting in the initial phase of lupus nephritis (LN), a process mediated by B cell involvement. Accordingly, targeting B cell subsets represents a potential therapeutic approach for LN. Ginsenoside compound K (CK), a bioavailable component of ginseng, possesses nephritis benefits in lupus-prone mice; however, the underlying mechanisms involving B cell subpopulations remain elusive. Methods: Female MRL/lpr mice were administered CK (40 mg/kg) intragastrically for 10 weeks, followed by measurements of anti-dsDNA antibodies, inflammatory chemokines, and metabolite profiles on renal samples. Podocyte function and ultrastructure were detected. Publicly available single-cell RNA sequencing data and flow cytometry analysis were employed to investigate B cell subpopulations. Metabolomics analysis was adopted. SIRT1 and AMPK expression were analyzed by immunoblotting and immunofluorescence assays. Results: CK reduced proteinuria and protected podocyte ultrastructure in MRL/lpr mice by suppressing circulating anti-dsDNA antibodies and mitigating systemic inflammation. It activated B cell-specific SIRT1 and AMPK with Rhamnose accumulation, hindering the conversion of renal B cells into plasma cells. This cascade facilitated the resolution of local renal inflammation. CK facilitated the clearance of deposited immune complexes, thus reinstating podocyte morphology and mobility by normalizing the expression of nephrin and SYNPO. Conclusions: Our study reveals the synergistic interplay between SIRT1 and AMPK, orchestrating the restoration of renal B cell subsets. This process effectively mitigates immune complex deposition and preserves podocyte function. Accordingly, CK emerges as a promising therapeutic agent, potentially alleviating the hyperactivity of renal B cell subsets during LN.

High Glucose and Advanced Glycosylation Endproducts(AGE) Modulate the P-cadherin Expression in Glomerular Epithelial Cells(GEpC) (배양한 사구체 상피세포에서 고농도 당과 후기 당화합물에 의한 P-cadherin의 변화)

  • Ha Tae-Sun;Koo Hyun-Hoe;Lee Hae-Soo;Yoon Ok-Ja
    • Childhood Kidney Diseases
    • /
    • v.9 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • Purpose : Podocytes are critical in maintaining the filtration barrier of the glomerulus and are dependent on the integrity of slit diaphragm(SD) proteins including nephrin, p-cadherin, and others. Diabetic proteinuric condition demonstrates defects in SD molecules as well as ultrastructural changes in podocytes. We examined the molecular basis for this alteration of SD molecules especially on P-cadherin as a candidate regulating the modulation of pathogenic changes in the barrier to protein filtration. Methods : To investigate whether high glucose and AGE induce changes in SD, we cultured rat GEpC under normal(5 mM) or high glucose(30 mM) and AGE- or BSA-added conditions and measured the change of P-cadherin expression by Western blotting and RT-PCR. Results : We found that administration of high glucose decreased the P-cadherin production significantly in the presence or absence of AGE by Western blotting. In RT-PCR high glucose with or without AGE also significantly decreased the expression of P-cadherin mRNA compared to those of controls. Such changes were not seen in the osmotic control. Conclusion : We suggest that high glucose with or without AGE suppresses the Production of P-cadherin at the transcriptional level and that these changes nay explain the functional changes of SD in diabetic conditions. (J Korean Soc Pediatr Nephrol 2005;9:119-127)

  • PDF