DOI QR코드

DOI QR Code

The Changes of Slit Diaphragm Molecules After Using Sirolimus

Sirolimus 사용 후 사구체 기저막 세극막 관련 분자의 변화

  • Choi, Jung-Youn (Department of Pediatrics, College of Medicine, Yeungnam University) ;
  • Han, Gi-Dong (Department of Food Science and Technology, Yeungnam University) ;
  • Kim, Yong-Jin (Department of Pathology, College of Medicine, Yeungnam University) ;
  • Park, Yong-Hoon (Department of Pediatrics, College of Medicine, Yeungnam University)
  • 최정연 (영남대학교 의과대학 소아과학교실) ;
  • 한기동 (영남대학교 식품공학과) ;
  • 김용진 (영남대학교 의과대학 병리학교실) ;
  • 박용훈 (영남대학교 의과대학 소아과학교실)
  • Received : 2010.08.26
  • Accepted : 2010.10.05
  • Published : 2010.10.31

Abstract

Purpose: Recently, massive proteinuria has been observed in some transplant patients after switching cyclosporine A (CsA) to sirolimus. To evaluate the pathogenesis of sirolimus-associated proteinuria, we investigated the early changes in slit diaphragm molecules by various administrative conditions of sirolimus and CsA. Methods: In vitro-Mouse podocytes were incubated with buffer (C), sirolimus ($10\;{\mu}g/mL$) after CsA ($10\;{\mu}g/mL$) (C-S), sirolimus only (S) and CsA and sirolimus simultaneously (C+S) for 12, 24, and 48 hours. In vivo- twenty four SPF female Wistar rats were divided into 4 groups buffer (C), sirolimus after 2 weeks of CsA (C-S), sirolimus only (S) and CsA and sirolimus simultaneously (C+S). All groups were treated by intraperitoneal injection every other day for 4 weeks (CsA: 25 mg/kg, sirolimus: 0.5 mg/kg). The changes in mRNA of slit diaphragm molecules were examined by RT-PCR. Results: The mRNA of nephrin was significantly decreased in group C-S and C+S in vitro. In vivo, the mRNA of nephrin in all groups using sirolimus and the mRNA of podocin in group C-S and C+S were decreased. Microscopically, group C-S and C+S showed small vacuolization and calcification in proximal tubular epithelial cells. Immunohistochemistry using nephrin and podocin antibodies did not show remarkable decrease of staining along the glomerular capillaries. Electron-microscopically, focal fusion of foot processes was seen in group C-S and C+S. Conclusion: This study suggests the decrease of slit diaphragm molecules (nephrin and podocin) in podocyte may be one of the causes of sirolimus associated proteinuria, and podocyte injury by sirolimus may need a primary hit by CsA to develop the proteinuria.

목 적 : 최근 신이식 환자들에서 cyclosporine A (CsA)의 대체로 sirolimus를 투여 받은 후 단백뇨가 발생한다는 임상보고가 있으나 단백뇨 발생기전의 정확한 메커니즘에 대한 연구가 없다. 이에 sirolimus에 의한 여러 단백뇨 발생기전 중 sirolimus와 CsA 투여 후 족세포의 세극막 관련 분자 변화를 조사하여 족세포와의 직접적인 영향에 대해 알아보고자 하였다. 방 법 : 생체 외 실험- 마우스 족세포를 완충액, CsA ($10\;{\mu}g/mL$) 처리 후 sirolimus ($10\;{\mu}g/mL$) 처리군, sirolimus 단독군, CsA와 sirolimus 동시 처리한 군으로 나누어 RT-PCR을 이용하여 12, 24, 48시간에 족세포의 세극막 관련 분자 변화를 측정하였다. 생체 내 실험- SPF Wistar 쥐 24마리를 각각 4군(완충액, CsA 2주 투여 후 sirolimus 2주간 투여, sirolimus 4주간 투여, CsA와 sirolimus를 4주간 동시투여)으로 분류하여 하루 걸러서 한번 복강 내 약물을 주입하였다(CsA: 25 mg/kg, sirolimus: 0.5 mg/kg). 모든 쥐는 약물주입 후 4주에 희생되어 병리조직은 오른쪽 신장의 일부분을 이용하고, 나머지 신장은 RT-PCR을 이용하여 세극막 관련 분자의 mRNA 발현 변화를 측정하였다. 결 과 : 생체 외 실험에서 CsA와 sirolimus 동시투여 또는 CsA 처리 후 sirolimus 처리군에서 nephrin 발현이 의미 있게 감소하였다. 생체 내 실험에서 nephrin 발현은 sirolimus를 사용한 모든 군에서, podocin 발현은 CsA와 sirolimus 동시투여 또는 CsA 처리 후 sirolimus 처리군에서 의미 있게 감소하였다. 광학현미경에서 CsA 투여군은 세뇨관 상피세포에서 공포형성 및 석회화가 관찰되었으며, 면역 조직화학검사에서 사구체 모세혈관의 nephrin, podocin항체 침착은 감소되지 않았다. CsA 투여군의 전자 현미경소견에서 사구체 족돌기의 국소적 융합이 있었으며, sirolimus 단독군에서는 특이소견이 없었다. 결 론 : 본 연구를 통해 sirolimus로 발생한 단백뇨의 많은 기전 중 하나로 sirolimus가 세극막 관련 분자 중 nephrin 및 podocin의 mRNA 발현을 감소시킬 수 있으며 sirolimus 단독보다는 CsA와 함께 작용했을 때 효과가 더 커질 수 있음을 제시하는 바이다.

Keywords

References

  1. Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 2004;4:378-83. https://doi.org/10.1111/j.1600-6143.2004.00332.x
  2. Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 2000;342:605-12. https://doi.org/10.1056/NEJM200003023420901
  3. Weir MR, Blahut S, Drachenburg C, Young C, Papademitriou J, Klassen DK, et al. Late calcineurin inhibitor withdrawal as a strategy to prevent graft loss in patients with suboptimal kidney transplant function. Am J Nephrol 2004;24:379-86. https://doi.org/10.1159/000079390
  4. Andrassy J, Graeb C, Rentsch M, Jauch KW, Guba M. mTOR inhibition and its effect on cancer in transplantation. Transplantation 2005;80:S171-4. https://doi.org/10.1097/01.tp.0000186912.23630.85
  5. Morath C, Arns W, Schwenger V, Mehrabi A, Fonouni H, Schmidt J, et al. Sirolimus in renal transplantation. Nephrol Dial Transplant 2007;22:viii61-viii65. https://doi.org/10.1093/ndt/gfm652
  6. Lee VW, Chapman JR. Sirolimus: its role in nephrology. Nephrology (Carlton) 2005;10: 606-14. https://doi.org/10.1111/j.1440-1797.2005.00493.x
  7. Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 2003;35:7S-14S. https://doi.org/10.1016/S0041-1345(03)00211-2
  8. Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB, Marks AR. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest 1996;98:2277-83. https://doi.org/10.1172/JCI119038
  9. He Z, Chen L, Qiu J, Li J, Zhao D, Chen G, et al. Conversion from cyclosporin A to sirolimus retards the progression of chronic allograft nephropathy in the long term in a rat kidney transplantation model. J Int Med Res 2009;37:1396-410. https://doi.org/10.1177/147323000903700514
  10. Sennesael JJ, Bosmans JL, Bogers JP, Verbeelen Verbeelen D, Verpooten GA. Conversion from cyclosporine to sirolimus in stable renal transplant recipients. Transplantation 2005; 80:1578-85. https://doi.org/10.1097/01.tp.0000184623.35773.6a
  11. Stallone G, Infante B, Schena A, Battaglia M, Ditonno P, Loverre A, et al. Rapamycin for treatment of chronic allograft nephropathy in renal transplant patients. J Am Soc Nephrol 2005;16:3755-62. https://doi.org/10.1681/ASN.2005060635
  12. Bumbea V, Kamar N, Ribes D, Esposito L, Modesto A, Guitard J, et al. Long-term results in renal transplant patients with allograft dysfunction after switching from calcineurin inhibitors to sirolimus. Nephrol Dial Transplant 2005;20:2517-23. https://doi.org/10.1093/ndt/gfh957
  13. Gonwa TA, Hricik DE, Brinker K, Grinyo JM, Schena FP; Sirolimus Renal Function Study Group. Improved renal function in sirolimus-treated renal transplant patients after early cyclosporine elimination. Transplantation 2002;74:1560-7. https://doi.org/10.1097/00007890-200212150-00013
  14. Letavernier E, Pe'raldi MN, Pariente A, Morelon E, Legendre C. Proteinuria following a switch from calcineurin inhibitors to sirolimus Transplantation. 2005;80:1198-203. https://doi.org/10.1097/01.tp.0000185200.17589.74
  15. Boratynska M, Banasik M, Watorek E, Falkiewicz K, Patrzałek D, Szyber P, et al. Conversion to sirolimus from cyclosporine may induce nephrotic proteinuria and progressive deterioration of renal function in chronic allograft nephropathy patients. Transplant Proc 2006;38:101-4. https://doi.org/10.1016/j.transproceed.2005.12.023
  16. Franco AF, Martini D, Abensur H, Noronha IL. Proteinuria in transplant patients associated with sirolimus. Transplant Proc 2007; 39:449-52. https://doi.org/10.1016/j.transproceed.2007.01.038
  17. Izzedine H, Brocheriou I, Frances C. Posttransplantation proteinuria and sirolimus. N Engl J Med 2005;353:2088-9.
  18. Rangan GK. Sirolimus-associated proteinuria and renal dysfunction. Drug Saf 2006; 29:1153-61. https://doi.org/10.2165/00002018-200629120-00006
  19. Letavernier E, Legendre C. mToR inhibitors- induced proteinuria: mechanisms, significance, and management. Transplant Rev(Orlando). 2008;22:125-30. https://doi.org/10.1016/j.trre.2007.12.001
  20. Han GD, Suzuki K, Koike H, Suzuki K, Yoneyama H, Narumi S, et al. IFN-inducible protein-10 plays a pivotal role in maintaining slit-diaphragm function by regulating podocyte cell-cycle balance. J Am Soc Nephrol 2006;17:442-53. https://doi.org/10.1681/ASN.2004090755
  21. Abbate M, Zoja C, Corna D, Capitanio M, Bertani T, Remuzzi G. In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol 1998;9:1213-24.
  22. Straathof-Galema L, Wetzels JF, Dijkman HB, Steenbergen EJ, Hilbrands LB. Sirolimus- associated heavy proteinuria in a renal transplant recipient: evidence for a tubular mechanism. Am J Transplant 2006;6:429- 33. https://doi.org/10.1111/j.1600-6143.2005.01195.x
  23. Mreich E, Coombes JD, Rangan GK. Sirolimus does not reduce receptor-mediated endocytosis of albumin in proximal tubule cells. Transplantation 2007;83:105-7. https://doi.org/10.1097/01.tp.0000240055.49572.07
  24. Bennett WM, DeMattos A, Meyer MM, Andoh T, Barry JM. Chronic cyclosporine nephropathy: the Achilles' heel of immunosuppressive therapy. Kidney Int 1996;50: 1089-100. https://doi.org/10.1038/ki.1996.415
  25. Saurina A, Campistol JM, Piera C, Diekmann F, Campos B, Campos N, et al. Conversion from calcineurin inhibitors to sirolimus in chronic allograft dysfunction: changes in glomerular haemodynamics and proteinuria. Nephrol Dial Transplant 2006;21:488-93. https://doi.org/10.1093/ndt/gfi266
  26. van den Akker JM, Wetzels JF, Hoitsma AJ. Proteinuria following conversion from azathioprine to sirolimus in renal transplant recipients. Kidney Int 2006;70:1355-7. https://doi.org/10.1038/sj.ki.5001792
  27. Diekmann F, Gutierrez-Dalmau A, Lopez S, Cofan F, Esforzado N, Ricart MJ, et al. Influence of sirolimus on proteinuria in de novo kidney transplantation with expanded criteria donors: comparison of two CNI-free protocols. Nephrol Dial Transplant 2007;22:2316-21. https://doi.org/10.1093/ndt/gfm181
  28. Letavernier E, Bruneval P, Mandet C, Van Huyen JP, Peraldi MN, Helal I, et al. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. Clin J Am Soc Nephrol 2007;2:326-33. https://doi.org/10.2215/CJN.03751106
  29. Letavernier E, Bruneval P, Vandermeersch S, Perez J, Mandet C, Belair MF, et al. Sirolimus interacts with pathways essential for podocyte integrity. Nephrol Dial Transplant 2009;24:630-8.
  30. Patari-Sampo A, Ihalmo P, Holthofer H. Molecular basis of the glomerular filtration: nephrin and the emerging protein complex at the podocyte slit diaphragm. Ann Med 2006;38:483-92. https://doi.org/10.1080/07853890600978149
  31. Kawachi H, Miyauchi N, Suzuki K, Han GD, Orikasa M, Shimizu F. Role of podocyte slit diaphragm as a filtration barrier. Nephrology (Carlton) 2006;11:274-81. https://doi.org/10.1111/j.1440-1797.2006.00583.x
  32. Kerjaschki D. Caught flat-footed: podocyte damage and the molecular bases of focal glomerulosclerosis. J Clin Invest 2001;108: 1583-7. https://doi.org/10.1172/JCI200114629
  33. Kwoh C, Shannon MB, Miner JH, Shaw A. Pathogenesis of nonimmune glomerulopathies. Annu Rev Pathol 2006;1:349-74. https://doi.org/10.1146/annurev.pathol.1.110304.100119
  34. Vollenbroker B, George B, Wolfgart M, Saleem MA, Pavenstadt H, Weide T. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol Renal Physiol 2009;296: F418-26. https://doi.org/10.1152/ajprenal.90319.2008
  35. Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet 2000;356:194-202.
  36. Kokui K, Yoshikawa N, Nakamura H, Itoh H. Cyclosporin reduces proteinuria in rats with aminonucleoside nephrosis. J Pathol 1992; 166:297-301. https://doi.org/10.1002/path.1711660313
  37. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14:931-8. https://doi.org/10.1038/nm.1857
  38. Meyrier A. Antiproteinuric and immunological effects of cyclosporin A in the treatment of glomerular diseases. Nephrol Dial Transplant 1992;7:S80-4.
  39. Nacar A, Kiyici H, Ogus E, Zagyapan R, Demirhan B, Ozdemir H, et al. Ultrastructural examination of glomerular and tubular changes in renal allografts with cyclosporine toxicity. Ren Fail 2006;28:543-7. https://doi.org/10.1080/08860220600923086
  40. DiJoseph JF, Sharma RN, Chang JY. The effect of rapamycin on kidney function in the Sprague-Dawley rat. Transplantation 1992; 53:507-13. https://doi.org/10.1097/00007890-199203000-00002
  41. Liew A, Chiang GS, Vathsala A. Factors associated with proteinuria in renal transplant recipients treated with sirolimus. TransplInt 2009;22:313-22.
  42. Ruiz JC, Campistol JM, Sanchez-Fructuoso A, Mota A, Grinyo JM, Paul J, et al. Early sirolimus use with cyclosporine elimination does not induce progressive proteinuria. Transplant Proc 2007;39:2151-2. https://doi.org/10.1016/j.transproceed.2007.06.054