• Title/Summary/Keyword: Neonicotinoid Insecticides

Search Result 19, Processing Time 0.023 seconds

Population Dynamics of Eriosoma lanigerum (Hemiptera: Aphididae) and Aphelinus mali (Hymenoptera: Aphelinidae) in Apple Orchards and Screening Effective Insecticides in the Laboratory (사과원에서 사과면충과 사과면충좀벌의 발생동태 및 살충제 실내검정)

  • Kim, Dong-Soon;Yang, Chang-Yeol;Jeon, Heung-Yong;Choi, Kyoung-Hee
    • Korean journal of applied entomology
    • /
    • v.48 no.3
    • /
    • pp.319-325
    • /
    • 2009
  • Woolly apple aphid, Eriosoma lanigerum, overwintered as adult or nymph stage on rootstocks, and crown- and root sucker in the soil. In an un sprayed apple orchard, the number of E. lanigerum colony started to increase from mid-April, showed the 1st peak between late June and early July, thereafter decreased followed by the 2nd peak in late July, and then again peaked in late September as the size in the 1st peak. In this orchard, the number of E. lanigerum colonies per tree did not exceed 3.5 colonies during the peak occurrence period, and was maintained around 2 colonies throughout seasons. In all seasons, parasitism of Aphelinus mali on E. lanigerum was much lower on root colonies than on aerial colonies that located on shoots and tree trunks above the ground. The parasitism of E. lanigerum was high in most orchards examined, showing parasitism of > 70% in maximum in most cases. In the laboratory bioassay for the mortality effects of several insecticides on E. lanigerum, fenitrothion, dichlorphos, machine oil, methidathion, thiacloprid, and imidacloprid showed 97.8, 96.8, 95.4, 91.5, 26.7, and 7.8% morality, respectively. Also, the adult emergence rates from A. mali mummies were 51.2, 72.6, 14.2, 3.5, 72.2, and 85.4% in the treatment of the above insecticides, respectively. Insecticides belong to neonicotinoid, which are newly developed to control aphids, showed low mortality against E. lanigerum. Fenitrothion and dichlorphos were effective on E. lanigerum control and had a low toxic to A. mali. Consequently, the insecticides should be useful in integrated pest management system for E. lanigerum in apple orchards.

Monitoring on Insecticide Resistance of Major Insect Pests in Plastic House (시설 재배 작물 주요 해충에 대한 약제저항성 모니터링)

  • Choi, Byeong-Ryeol;Park, Hyung-Man;Yoo, Jai-Ki;Kim, Sun-Gon;Baik, Chai-Hun;Lee, Si-Woo
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.380-390
    • /
    • 2005
  • This study was carried out for looking into the status of susceptibility of vinyl house insect pests to insecticides. The Thrips (Thrips palmi and Frankliniela occidentalis), Mites (Tetranychus urticae), Aphids (Aphis gossypii) and Whitefly (Trialeurodes vaporariorum) were captured at various areas where the host crop was being cultivated and the susceptibility level of each pest insect was investigated. The susceptibility of each pest insect varied by insect species and areas where they were caught. The tested insecticides showed good control effect to palm thrips in 2000, but in 2003 showed decrease of effect to them. Western flower thrips showed low susceptibility to neonicotinoids, imidacloprid and thiamethoxam, but high to chlorfenapyr, spinosad, emamectinbenzoate and fipronil. Antibiotic insecticides, abamectin and milbemectin, and chlorfenapyr were very effective on mite control and dicofol still had good effectiveness to it despite of long year use. No aphid species showed resistance to pyrethroid and carbamate insecticides. Relatively new insecticides such as imidacloprid, spinosad, pymetrozine were effective to whitefly, but not were organophosphates, carbamates and pyrethroids.

Occurrence of Sweet-potato Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and Its Response to Insecticide in Gyeonggi Area (경기지역에서 담배가루이의 발생 및 약제반응)

  • Lee, Young-Su;Kim, Jin-Young;Hong, Soon-Sung;Park, Jungan;Park, Hong-Hyun
    • Korean journal of applied entomology
    • /
    • v.51 no.4
    • /
    • pp.377-382
    • /
    • 2012
  • This study investigated the occurrence of sweet potato whitefly, Bemisia tabaci affecting cucumber, eggplant and red pepper, as well as sweet potato species, and its response to insecticides in Gyeonggi province from 2010 to 2011. Sweet potato whitefly is widespread throughout the southern part of Gyeonggi province. Most regional populations of B. tabaci belong to biotype Q having been reported in the south Korea since 2005, but in Goyang mixed populations of two biotypes (B and Q) were found. Survey results of Tomato Yellow Leaf Curl Virus (TYLCV) disease that was vectored by B. tabaci indicated that this virus disease was not spread throughout the Gyeonggi province. Biotype Q of B. tabaci was found to be resistant to neonicotinoid insecticides, whereas biotype B was highly susceptible to them.

Establishment of Discriminating Concentration based Assessment for Insecticide Resistance Monitoring of Palm thrips (오이총채벌레의 약제 저항성 진단을 위한 판별농도 기반 생물검정법 확립)

  • Jeon, Sung-Wook;Park, Bueyong;Park, Se-Keun;Lee, Sang-Ku;Ryu, Hyun-Ju;Lee, Sang-Bum;Jeong, In-Hong
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.557-565
    • /
    • 2017
  • For our survey of insecticidal resistance of Palm thrips (Thrips palmi Karny), we established the discriminating time (DT) and concentration (DC) of nine insecticides, and we conducted a bioassay about seven local populations via leaf-dipping methods. The discriminating times of the recommended concentration (RC) were 24 h at emamectin benzoate EC and spinetoram SC, 48 h at chlorfenapyr EC, 72 h at spinosad SC, cyantraniliprole EC, acetamiprid WP, dinotefuran WG, imidacloprid WP and thiacloprid SC after treatment. The DC estimated the concentration which showed the difference within the mortalities of these local populations. The DCs were emamectin benzoate EC $0.013mg\;L^{-1}$ (RC, $10.8mg\;L^{-1}$), spinetoram SC $0.125mg\;L^{-1}$ (RC, $25.0mg\;L^{-1}$), chlorfenapyr EC $0.25mg\;L^{-1}$ (RC, $50.0mg\;L^{-1}$), spinosad SC $0.083mg\;L^{-1}$ (RC, $50.0mg\;L^{-1}$) and cyantraniliprole EC $5.0mg\;L^{-1}$ (RC, $50.0mg\;L^{-1}$), and DCs of neonicotinoids were their RCs, that is, acetamiprid WP (RC, $40.0mg\;L^{-1}$), dinotefuran WG (RC, $20.0mg\;L^{-1}$), imidacloprid WP(RC, $50.0mg\;L^{-1}$) and thiacloprid SC (RC, $50.0mg\;L^{-1}$). From our investigation into the resistance of the local populations with DT and DC application, the neonicotinoid insecticides have shown a high resistant level for all the local populations, and the other insecticides have demonstrated low or non-resistance. In the use of neonicotinoid insecticides to control Palm thrips, one must take caution. As a result, the establishment of DT and DC in the single dose bioassay method was helpful for surveying the insecticide response dynamics and the development of an insecticide resistance management strategy.

Insecticide Susceptibility of Western Flower Thrip, Frankliniella occidentalis (Thysanoptera: Thripidae) on Horticultural Crops in Gyeonggi Area (경기지역 원예작물 꽃노랑총채벌레 약제 감수성)

  • Lee, Young-Su;Lee, Hee-A;Lee, Hyun-Ju;Hong, Soon-Sung;Kang, Chang-Sung;Choi, Yong-Seok;Kim, Hyeong-Hwan;Jang, Myoung-Jun
    • Korean journal of applied entomology
    • /
    • v.56 no.2
    • /
    • pp.179-186
    • /
    • 2017
  • This study was conducted to monitor the insecticidal susceptibility of western flower thrip, Frankliniella occidentalis, which damage horticultural crops in the Gyeonggi area. Bioassays were conducted under laboratory and greenhouse conditions by using the recommended concentrations of commercial insecticides being used for the control of thrips. Neonicotinoid insecticides, especially acetamiprid (8%) soluble powder (SP), clothianidin (8%) SC, imidacloprid (10%) wettable powder (WP) and thiacloprid (10%) water dispersible granule (WG) were not toxic to F. occidentalis collected from horticultural crops. However, F. occidentalis collected from vegetable greenhouses was extremely susceptible to acetamiprid + spinetoram (6 + 4%) suspension concentration (SC), clothianidin + spinetoram (6 + 4%) SC and methoxyfenozide + spinetoram (6 + 4%) SC, which resulted in over 90% control of thrips. In the greenhouse test, spinetoram (5%) WG, which caused 100% F. occidentalis mortality in the laboratory test, showed 87.4, 88.0, and 98.3% control at 3, 6, and 9 days after treatment, respectively, while imidacloprid (10%) WP showed below 44% control. From the results of this study, spinosin insecticides, such as more than over 4 and 10% of spinetoram and spinosad, and pyrrole insecticide, such as 5% chlorfenapyr, are recommended for the effective control of F. occidentalis.

An Integrated Biological Control Using an Endoparasitoid Wasp (Cotesia plutellae) and a Microbial Insecticide (Bacillus thuringiensis) against the Diamondback Moth, Plutella xylostella (배추좀나방에 대한 프루텔고치벌과 미생물농약의 통합생물방제)

  • Kim, Kyusoon;Kim, Hyun;Park, Young-Uk;Kim, Gil-Hah;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.52 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • All tested Korean populations of the diamondback moth, Plutella xylostella, are known to be resistant especially against pyrethroid insecticides by mutation in its molecular target, para-sodium channel. Moreover, P. xylostella is able to develop resistance against most commercial insecticides. This study was performed to develop an efficient control technique against P. xylostella by a combined treatment of an endoparasitoid wasp, Cotesia plutellae, and a microbial insecticide, Bacillus thuringiensis. To investigate any parasitism preference of C. plutellae against susceptible and resistant P. xylostella, five different populations of P. xylostella were compared in insecticide susceptibilities and parasitism by C. plutellae. These five P. xylostella populations showed a significant variation against three commercial insecticides including pyrethroid, organophosphate, neonicotinoid, and insect growth regulator. However, there were no significant differences among five P. xylostella populations in their parasitic rates by C. plutellae. Moreover, parasitized larvae of P. xylostella showed significantly higher susceptibility to B. thuringiensis. As an immunosuppressive agent, viral ankyrin genes (vankyrins) encoded in C. plutellae were transiently expressed in nonparasitized larvae. Expression of vankyrins significantly enhanced the efficacy of B. thuringiensis against the third instar larvae of P. xylostella. Thus an immunosuppression induced by C. plutellae enhanced the insecticidal efficacy of B. thuringiensis. These results suggest that a combined treatment of C. plutellae and B. thuringiensis may effectively control the insecticide-resistant populations of P. xylostella.

Evaluation of Neonicotinoid Pesticides' Residual Toxicity to Honeybees Following or Foliage Treatment (네오니코티노이드계 농약의 사용방법에 따른 꿀벌엽상잔류 독성 평가)

  • Jin Ho Kim;Chul-Han Bae;ChangYul Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.484-497
    • /
    • 2024
  • Neonicotinoid pesticides, widely used worldwide as potent insecticides, have been found to have detrimental effects on the environment and living organisms due to their persistent residues. This study aimed to investigate the neonicotinoid pesticides, imidacloprid, and clothianidin, focusing on their impact on honey bee toxicity and foliar residue levels. Alfalfa was selected as control crop while bell peppers, and cucumbers were chosen as representative application crops, respectively. The investigation involved comparing the toxicity and foliar residue levels resulting from soil and foliar treatments, with a focus on identifying potential shortcomings in conventional foliar residue toxicity testing methods. Imidacloprid and clothianidin were applied to crops or soil at recommended rates and through irrigation. The honey bee mortality rate (RT25) over time was determined, and pesticide residues on leaves were quantified using High-Performance Liquid Chromatography (HPLC). The results revealed that foliar treatment with imidacloprid on alfalfa resulted in an RT25 of less than 1 day, with residues ranging from 1.07 to 19.27 mg/kg. In contrast, application on bell peppers showed RT25 within 9 days, with residues ranging from 1.00 to 45.10 mg/kg. Clothianidin foliar treatment displayed RT25 within 10 days on alfalfa, with residues between 0.61 and 2.57 mg/kg. On bell peppers, RT25 was within 28 days, with residues ranging from 0.13 to 2.85 mg/kg. Soil treatment with imidacloprid and clothianidin in alfalfa exhibited minimal impact on honey bees and residues of 0.05 to 0.37 mg/kg. However, in applied crops, imidacloprid showed RT25 within 28 days and residues ranging from 4.47 to 130.43 mg/kg, while clothianidin exhibited RT25 within 35 days and residues between 5.96 and 42.32 mg/kg. In conclusion, when comparing honey bee toxicity and foliar residues among crops, application crops had a more significant impact on honey bee mortality and higher residue levels compared to control crops. Moreover, soil treatment for application crops resulted in higher RT25 and residue levels compared to foliar treatment. Therefore, to ensure pesticide safety and environmental sustainability, diverse research approaches considering different crops and application methods are necessary for the safety assessment of imidacloprid and clothianidin.

Residual characteristics of Neonicotinoid Insecticide dinotefuran and thiacloprid in cucumber (Neonicotinoide계 농약 dinotefuran과 thiacloprid의 오이 중 잔류특성)

  • Lee, Eun-Young;Noh, Hyun-Ho;Park, Young-Soon;Kang, Kyung-Won;Lee, Kwang-Hun;Park, Hyo-Kyung;Yun, Sang-Soon;Jin, Chung-Woo;Han, Sang-Kuk;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.2
    • /
    • pp.98-104
    • /
    • 2009
  • This study was carried out to investigate the residue patterns of two neonicotinoid insecticides, dinotefuran and thiacloprid, commonly used for cucumber, were subjected to indicate a residual characteristic under greenhouse conditions. The pesticides were sprayed onto the crop at recommended and double doses 7 days before harvest and then sampling was done 0, 2, 3, 5, and 7 days after spraying. The amounts of their residues in the crop were analyzed with an HPLC. Their detection limits were 0.01 mg/kg for dinotefuran and 0.005 mg/kg for thiacloprid. Mean recoveries of dinotefuran and thiacloprid were from 85.78 to 89.52 and from 85.71 to 95.31%, respectively. Half-lives of dinotefuran and thiacloprid were 2.8 and 1.8 days at the recommended dose and 2.8 and 1.5 days at the doubled dose, respectively. The ratios of the EDI to ADI by intake the crop harvested 7 days after spraying were less than 0.1% of their ADIs.

Resistance development and cross-resistance of green peach aphid, Myzus persicae (Homoptera : Aphididae), to imidacloprid (Imidacloprid에 대한 복숭아혹진딧물의 저항성 발달 및 교차저항성)

  • Choi, Byeong-Ryeol;Lee, Si-Woo;Yoo, Jai-Ki
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.264-270
    • /
    • 2002
  • Studies on the resistance monitoring of green peach ahpid, Myzus persicae, its development pattern by artificial selection with imidacloprid and cross-resistance were carried out to develope resistance management strategy. Resistance ratios of M. persicae collected at Hwachon and Dunnae among 5 locations in alpine cultivation area appeared to be high as 37.2 and 16.5, respectively. Resistance of aphid to imidacloprid developed slowly up to 20 time selection, and after that it grew quickly. Imidacloprid-resistant aphid strain showed low cross-resistance ratios(<10) to most of organophosphates, carbamates, and mixed insecticides except pirimicarb(487.8), but high ratios to acetamiprid(143.0) which is one of the neonicotinoids like imidacloprid, and pyrethroids such as deltamethrin(14.9), flucythrinate(12.9) and halothrin(15.9).