• Title/Summary/Keyword: Neonicotinoid

Search Result 28, Processing Time 0.027 seconds

Occurrence of Sweet-potato Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and Its Response to Insecticide in Gyeonggi Area (경기지역에서 담배가루이의 발생 및 약제반응)

  • Lee, Young-Su;Kim, Jin-Young;Hong, Soon-Sung;Park, Jungan;Park, Hong-Hyun
    • Korean journal of applied entomology
    • /
    • v.51 no.4
    • /
    • pp.377-382
    • /
    • 2012
  • This study investigated the occurrence of sweet potato whitefly, Bemisia tabaci affecting cucumber, eggplant and red pepper, as well as sweet potato species, and its response to insecticides in Gyeonggi province from 2010 to 2011. Sweet potato whitefly is widespread throughout the southern part of Gyeonggi province. Most regional populations of B. tabaci belong to biotype Q having been reported in the south Korea since 2005, but in Goyang mixed populations of two biotypes (B and Q) were found. Survey results of Tomato Yellow Leaf Curl Virus (TYLCV) disease that was vectored by B. tabaci indicated that this virus disease was not spread throughout the Gyeonggi province. Biotype Q of B. tabaci was found to be resistant to neonicotinoid insecticides, whereas biotype B was highly susceptible to them.

Establishment of Discriminating Concentration based Assessment for Insecticide Resistance Monitoring of Palm thrips (오이총채벌레의 약제 저항성 진단을 위한 판별농도 기반 생물검정법 확립)

  • Jeon, Sung-Wook;Park, Bueyong;Park, Se-Keun;Lee, Sang-Ku;Ryu, Hyun-Ju;Lee, Sang-Bum;Jeong, In-Hong
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.557-565
    • /
    • 2017
  • For our survey of insecticidal resistance of Palm thrips (Thrips palmi Karny), we established the discriminating time (DT) and concentration (DC) of nine insecticides, and we conducted a bioassay about seven local populations via leaf-dipping methods. The discriminating times of the recommended concentration (RC) were 24 h at emamectin benzoate EC and spinetoram SC, 48 h at chlorfenapyr EC, 72 h at spinosad SC, cyantraniliprole EC, acetamiprid WP, dinotefuran WG, imidacloprid WP and thiacloprid SC after treatment. The DC estimated the concentration which showed the difference within the mortalities of these local populations. The DCs were emamectin benzoate EC $0.013mg\;L^{-1}$ (RC, $10.8mg\;L^{-1}$), spinetoram SC $0.125mg\;L^{-1}$ (RC, $25.0mg\;L^{-1}$), chlorfenapyr EC $0.25mg\;L^{-1}$ (RC, $50.0mg\;L^{-1}$), spinosad SC $0.083mg\;L^{-1}$ (RC, $50.0mg\;L^{-1}$) and cyantraniliprole EC $5.0mg\;L^{-1}$ (RC, $50.0mg\;L^{-1}$), and DCs of neonicotinoids were their RCs, that is, acetamiprid WP (RC, $40.0mg\;L^{-1}$), dinotefuran WG (RC, $20.0mg\;L^{-1}$), imidacloprid WP(RC, $50.0mg\;L^{-1}$) and thiacloprid SC (RC, $50.0mg\;L^{-1}$). From our investigation into the resistance of the local populations with DT and DC application, the neonicotinoid insecticides have shown a high resistant level for all the local populations, and the other insecticides have demonstrated low or non-resistance. In the use of neonicotinoid insecticides to control Palm thrips, one must take caution. As a result, the establishment of DT and DC in the single dose bioassay method was helpful for surveying the insecticide response dynamics and the development of an insecticide resistance management strategy.

Population Dynamics of Eriosoma lanigerum (Hemiptera: Aphididae) and Aphelinus mali (Hymenoptera: Aphelinidae) in Apple Orchards and Screening Effective Insecticides in the Laboratory (사과원에서 사과면충과 사과면충좀벌의 발생동태 및 살충제 실내검정)

  • Kim, Dong-Soon;Yang, Chang-Yeol;Jeon, Heung-Yong;Choi, Kyoung-Hee
    • Korean journal of applied entomology
    • /
    • v.48 no.3
    • /
    • pp.319-325
    • /
    • 2009
  • Woolly apple aphid, Eriosoma lanigerum, overwintered as adult or nymph stage on rootstocks, and crown- and root sucker in the soil. In an un sprayed apple orchard, the number of E. lanigerum colony started to increase from mid-April, showed the 1st peak between late June and early July, thereafter decreased followed by the 2nd peak in late July, and then again peaked in late September as the size in the 1st peak. In this orchard, the number of E. lanigerum colonies per tree did not exceed 3.5 colonies during the peak occurrence period, and was maintained around 2 colonies throughout seasons. In all seasons, parasitism of Aphelinus mali on E. lanigerum was much lower on root colonies than on aerial colonies that located on shoots and tree trunks above the ground. The parasitism of E. lanigerum was high in most orchards examined, showing parasitism of > 70% in maximum in most cases. In the laboratory bioassay for the mortality effects of several insecticides on E. lanigerum, fenitrothion, dichlorphos, machine oil, methidathion, thiacloprid, and imidacloprid showed 97.8, 96.8, 95.4, 91.5, 26.7, and 7.8% morality, respectively. Also, the adult emergence rates from A. mali mummies were 51.2, 72.6, 14.2, 3.5, 72.2, and 85.4% in the treatment of the above insecticides, respectively. Insecticides belong to neonicotinoid, which are newly developed to control aphids, showed low mortality against E. lanigerum. Fenitrothion and dichlorphos were effective on E. lanigerum control and had a low toxic to A. mali. Consequently, the insecticides should be useful in integrated pest management system for E. lanigerum in apple orchards.

Insecticide Susceptibility of Western Flower Thrip, Frankliniella occidentalis (Thysanoptera: Thripidae) on Horticultural Crops in Gyeonggi Area (경기지역 원예작물 꽃노랑총채벌레 약제 감수성)

  • Lee, Young-Su;Lee, Hee-A;Lee, Hyun-Ju;Hong, Soon-Sung;Kang, Chang-Sung;Choi, Yong-Seok;Kim, Hyeong-Hwan;Jang, Myoung-Jun
    • Korean journal of applied entomology
    • /
    • v.56 no.2
    • /
    • pp.179-186
    • /
    • 2017
  • This study was conducted to monitor the insecticidal susceptibility of western flower thrip, Frankliniella occidentalis, which damage horticultural crops in the Gyeonggi area. Bioassays were conducted under laboratory and greenhouse conditions by using the recommended concentrations of commercial insecticides being used for the control of thrips. Neonicotinoid insecticides, especially acetamiprid (8%) soluble powder (SP), clothianidin (8%) SC, imidacloprid (10%) wettable powder (WP) and thiacloprid (10%) water dispersible granule (WG) were not toxic to F. occidentalis collected from horticultural crops. However, F. occidentalis collected from vegetable greenhouses was extremely susceptible to acetamiprid + spinetoram (6 + 4%) suspension concentration (SC), clothianidin + spinetoram (6 + 4%) SC and methoxyfenozide + spinetoram (6 + 4%) SC, which resulted in over 90% control of thrips. In the greenhouse test, spinetoram (5%) WG, which caused 100% F. occidentalis mortality in the laboratory test, showed 87.4, 88.0, and 98.3% control at 3, 6, and 9 days after treatment, respectively, while imidacloprid (10%) WP showed below 44% control. From the results of this study, spinosin insecticides, such as more than over 4 and 10% of spinetoram and spinosad, and pyrrole insecticide, such as 5% chlorfenapyr, are recommended for the effective control of F. occidentalis.

Persistence of the Insecticide Clothianidin in Paddy and Upland Soils (논 및 밭토양 중 살충제 Clothianidin의 잔류특성)

  • Choi, Young-Joon;Kwon, Chan-Hyeok;Yun, Tae-Yong;Lee, Young-Deuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.290-297
    • /
    • 2014
  • BACKGROUND: The current study purposed to analyse the dissipation levels of a neonicotinoid insecticide and clothianidin in paddy and upland soils and clarify the effects of soil moisture on degradation and persistence of the insecticide. METHODS AND RESULTS: In order to achieve the research purposes, clothianidin 8% SG was applied to the paddy and upland fields at the rate of 0.024 kg a.i./10a, while the analytical standard was treated at 0.25 mg/kg soil under laboratory conditions. Based on the multiple first-order kinetics, total clothianidin in soils was dissipated with $DT_{50}$ of 6.7-16.1 and 6.9-8.2 days in the paddy and upland fields, respectively, whereas the figures under the laboratory condition became larger showing 56.3 and 19.6 days. CONCLUSION: As affected by soil moisture, some differences in degradative pathways were observed. Flooding of soil caused evidently demethylation and delayed cyclization of a major metabolite, thiazolylmethylguanidine (TMG) and methylaminoimidazole(MAI), compared to the aerobic upland condition. More than 80% and 50% of the parent compound was dissipated by the 24th day after the final application in both soils and, transformation products had constituted most of soil residues after that.

Susceptibility of sweetpotato whitefly, Bemisia tabaci (Homoptera : Aleyrodidae) to commercially registered insecticides in Korea (외래해충인 담배가루이의 약제감수성)

  • Kim, Gil-Hah;Lee, Young-Su;Lee, In-Hwan;Ahn, Ki-Su
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 2000
  • These studies were carried out to investigate the toxicities of 43 registered insecticides to the sweetpotato whitefly(Bemisia tabaci, B. biotype). Insecticide activities were evaluated by testing systemic action and residual effect in the laboratory, and control efficacy in the greenhouse. All experiments were tested at the recommended concentration(ppm) of each insecticides. Insect growth regulators (IGRs), pyriproxyfen and teflubenzuron showed >95% ovicidal effect. The insecticides that showed >95% larvicidal activity on 3rd nymphal instars were abamectin, acetamiprid, imidacloprid, pyriproxyfen, and acetamiprid+ ethofenprox. Insecticides with >95% adulticidal activity were abamectin, acetamiprid, diazinon, endosulfan, fenitrothion, imidacloprid, methidathion, pirimiphos-methyl, pymetrozine, spinosad, acetamiprid+ ethofenprox, cartap kydrochloride+buprofezin, and fenpropathrin+fenitrothion. Abamectin, acetamiprid, imidacloprid, pyriproxyfen, and acetamiprid+ethofenprox showed both residual effect and systemic activity. In the control efficacy test on B. tabaci, 90% control values were obtained at 1st day after treatment of the insecticides including abamectin, acetamiprid, imidacloprid, pyriproxyfen and acetamiprid+ethofenprox but in pyriproxyfen, 90% control value was reached at 7th day after treatment. These results indicate that abamectin, acetamiprid, imidacloprid, pyriproxyfen and acetamiprid+ethofenprox can be used in control for B. tabaci in field.

  • PDF

An Integrated Biological Control Using an Endoparasitoid Wasp (Cotesia plutellae) and a Microbial Insecticide (Bacillus thuringiensis) against the Diamondback Moth, Plutella xylostella (배추좀나방에 대한 프루텔고치벌과 미생물농약의 통합생물방제)

  • Kim, Kyusoon;Kim, Hyun;Park, Young-Uk;Kim, Gil-Hah;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.52 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • All tested Korean populations of the diamondback moth, Plutella xylostella, are known to be resistant especially against pyrethroid insecticides by mutation in its molecular target, para-sodium channel. Moreover, P. xylostella is able to develop resistance against most commercial insecticides. This study was performed to develop an efficient control technique against P. xylostella by a combined treatment of an endoparasitoid wasp, Cotesia plutellae, and a microbial insecticide, Bacillus thuringiensis. To investigate any parasitism preference of C. plutellae against susceptible and resistant P. xylostella, five different populations of P. xylostella were compared in insecticide susceptibilities and parasitism by C. plutellae. These five P. xylostella populations showed a significant variation against three commercial insecticides including pyrethroid, organophosphate, neonicotinoid, and insect growth regulator. However, there were no significant differences among five P. xylostella populations in their parasitic rates by C. plutellae. Moreover, parasitized larvae of P. xylostella showed significantly higher susceptibility to B. thuringiensis. As an immunosuppressive agent, viral ankyrin genes (vankyrins) encoded in C. plutellae were transiently expressed in nonparasitized larvae. Expression of vankyrins significantly enhanced the efficacy of B. thuringiensis against the third instar larvae of P. xylostella. Thus an immunosuppression induced by C. plutellae enhanced the insecticidal efficacy of B. thuringiensis. These results suggest that a combined treatment of C. plutellae and B. thuringiensis may effectively control the insecticide-resistant populations of P. xylostella.

Monitoring on Insecticide Resistance of Major Insect Pests in Plastic House (시설 재배 작물 주요 해충에 대한 약제저항성 모니터링)

  • Choi, Byeong-Ryeol;Park, Hyung-Man;Yoo, Jai-Ki;Kim, Sun-Gon;Baik, Chai-Hun;Lee, Si-Woo
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.380-390
    • /
    • 2005
  • This study was carried out for looking into the status of susceptibility of vinyl house insect pests to insecticides. The Thrips (Thrips palmi and Frankliniela occidentalis), Mites (Tetranychus urticae), Aphids (Aphis gossypii) and Whitefly (Trialeurodes vaporariorum) were captured at various areas where the host crop was being cultivated and the susceptibility level of each pest insect was investigated. The susceptibility of each pest insect varied by insect species and areas where they were caught. The tested insecticides showed good control effect to palm thrips in 2000, but in 2003 showed decrease of effect to them. Western flower thrips showed low susceptibility to neonicotinoids, imidacloprid and thiamethoxam, but high to chlorfenapyr, spinosad, emamectinbenzoate and fipronil. Antibiotic insecticides, abamectin and milbemectin, and chlorfenapyr were very effective on mite control and dicofol still had good effectiveness to it despite of long year use. No aphid species showed resistance to pyrethroid and carbamate insecticides. Relatively new insecticides such as imidacloprid, spinosad, pymetrozine were effective to whitefly, but not were organophosphates, carbamates and pyrethroids.