DOI QR코드

DOI QR Code

Persistence of the Insecticide Clothianidin in Paddy and Upland Soils

논 및 밭토양 중 살충제 Clothianidin의 잔류특성

  • Choi, Young-Joon (Residue, Technical Research Institute, Dongbang Agro Corporation) ;
  • Kwon, Chan-Hyeok (Food Standard Division, Ministry of Food and Drug Safety) ;
  • Yun, Tae-Yong (Residue, Technical Research Institute, Dongbang Agro Corporation) ;
  • Lee, Young-Deuk (Division of Life and Environmental Science, Daegu University)
  • 최영준 ((주)동방아그로 기술연구소 잔류) ;
  • 권찬혁 (식품의약품안전처 식품기준과) ;
  • 윤태용 ((주)동방아그로 기술연구소 잔류) ;
  • 이영득 (대구대학교 생명환경대학 생명환경학부)
  • Received : 2014.06.25
  • Accepted : 2014.11.13
  • Published : 2014.12.31

Abstract

BACKGROUND: The current study purposed to analyse the dissipation levels of a neonicotinoid insecticide and clothianidin in paddy and upland soils and clarify the effects of soil moisture on degradation and persistence of the insecticide. METHODS AND RESULTS: In order to achieve the research purposes, clothianidin 8% SG was applied to the paddy and upland fields at the rate of 0.024 kg a.i./10a, while the analytical standard was treated at 0.25 mg/kg soil under laboratory conditions. Based on the multiple first-order kinetics, total clothianidin in soils was dissipated with $DT_{50}$ of 6.7-16.1 and 6.9-8.2 days in the paddy and upland fields, respectively, whereas the figures under the laboratory condition became larger showing 56.3 and 19.6 days. CONCLUSION: As affected by soil moisture, some differences in degradative pathways were observed. Flooding of soil caused evidently demethylation and delayed cyclization of a major metabolite, thiazolylmethylguanidine (TMG) and methylaminoimidazole(MAI), compared to the aerobic upland condition. More than 80% and 50% of the parent compound was dissipated by the 24th day after the final application in both soils and, transformation products had constituted most of soil residues after that.

토양 수분과 실험 조건에 따른 Clothianidin의 토양 중 분해 및 잔류 특성의 변화를 비교 평가하고자 동일 지역 논 및 밭포장에서 토양잔류성 실험을 수행하였다. 또한 동일포장에서 채취한 토양을 대상으로 실험실 조건에서 토양 및 수중 잔류성 실험을 병행하였다. 논 및 밭포장에는 Clothianidin 8% 수용성입제(SG)를 600L/10a(0.024kg a.i./10a) 수준으로 전면 살포하였고 실험실 조건에서는 Clothianidin 표준용액을 0.25 mg/kg 수준이 되도록 점적 처리한 후, 경시적으로 토양 중 Clothianidin 및 주요 분해산물 TZMU, TZNG, MNG, TMG, MAI의 잔류량 변화를 조사하였다. Clothianidin의 토양 중 소실 양상은 포장 및 실험실 조건 모두에서 다중 1차 감쇄반응의 경향을 현저히 나타내었다. 총 Clothianidin을 기준으로 한 토양 중 반감기는 포장조건의 논 및 밭토양에서 각각 6.7-16.1일 및 6.9-8.2일 범위였으며 실험실 조건에서는 각각 56.3일 및 19.6일로 산출되었다. 포장조건에서의 토양 중 주요 분해산물로는 논토양에서 TZNG, TMG, MAI와 밭토양에서 TZMU와 MAI가 검출되어 다소 상이한 경향을 나타내었으나, 실험실조건에서는 논 및 밭토양 모두에서 TMG와 MAI가 주요 분해산물로 확인되었다. 수중잔류성 시험에서 Clothianidin의 토양수 중 반감기는 4.8일이었으며, TZMU가 주요 분해 대사산물로 조사되었다. 분해산물의 잔류 수준은 TZNG와 TZMU의 경우 약제처리 초기에 빠른 속도로 생성되었다가 급격히 감소되었던 반면, TMG와 MAI의 경우에는 지속적인 수준을 유지하였다. 약제처리 24일 후 포장 및 실험실조건에서 모화합물은 각각 80% 및 50%이상이 분해되었으며 그 이후 총 Clothianidin 잔류량의 대부분은 분해산물에 의한 것으로 평가되었다.

Keywords

References

  1. Barbero, L., Gaia, P., 1979. Enological consequence of the use of Ronilan in grape cultivation, Vini Italia. 21, 95-100.
  2. Ebert, T.A., Taylor, R.A., Downer, R.A., Hall, F.R., 1999. Deposit structure and efficacy of pesticide application. 2: Trichplusia ni control on cabbage with fipronil, Pestic Sci. 55, 793-798. https://doi.org/10.1002/(SICI)1096-9063(199908)55:8<793::AID-PS14>3.0.CO;2-0
  3. Edwards, C.A., 1975. Factors that affect the persistence of pesticides in plants and soils, Pure Appl. Chem. 17, 39-56.
  4. Fouque-Brouard, C.M., Foumier, J.M., 1996. Adsorptiondesorption and leaching of phenylurea herbicides on soils, Talanta 43, 1793-1802. https://doi.org/10.1016/0039-9140(96)01976-5
  5. Garcia-Cazorla, J., Xirau-Vayreda, M., 1998. Monitoring degradation of dicarboximidic fungicide residue in soils, J. Agric. Food Chem. 46, 2845-2850. https://doi.org/10.1021/jf971025t
  6. Hamaker, J.W., Thompson, J.M., 1972. Adsorption, in: Goring, C.A.I., Hamaker, J.W. (Eds), Organic Chemicals in the Soil Environment , Marcel Dekker, Inc., NY, USA, pp. 49-143.
  7. Hamaker, J.W., Goring, C.A.I., 1976. Turn over of pesticide residues in soil, in: Kaufman, D.D. (Eds), Bound and conjugated pesticide residues, American Chemical Society, Washington DC, USA, pp. 219-243.
  8. Herbert, V.R., Miller, G.C., 1990. Depth dependence of direct and indirect photolysis on soil surfaces, J. Agric. Food Chem. 38, 913-918. https://doi.org/10.1021/jf00093a069
  9. Hideki, U., Masato, K., Atsuo, A., Tokunori, Y., Koji, M., 2006. Discovery and development of a novel insecticide clothianidin, Sumitomo kagaku 2006-II , 1-14.
  10. Hill, B.D., Inaba, D.J., 1990. Fate and persistence of residues on wheat used to explain efficacy differences between SC and EC formulations, Pesti. Sci. 29, 57-66. https://doi.org/10.1002/ps.2780290108
  11. Hong, F., Pehkonen, S., 1998. Hydrolysis of phorate using simulated environmental conditions; Rates, mechanism, and product analysis, J. Agric. Food Chem. 46, 1192-1199. https://doi.org/10.1021/jf970675u
  12. Hwang, J.I., Jeon, Y.H., Kim, H.Y., Kim, J.H., Ahn, J.W., Kim, K.S., Yu, Y.M., Kim, J.E., 2011. Residue of fungicide boscalid in ginseng treated by different spraying methods, Korean J. Pestic. Sci. 15, 366-373.
  13. Kim, J.B., Song, B.H., Chun, J.C., Im, G.J., Im, Y.B., 1997. Effect of sprayable formulations on pesticide adhesion and persistence in several crops, Korean J. Pestic. Sci. 1, 35-40.
  14. Lee, E.Y., Noh, H.H., Park, Y.S., Kang, K.W., Lee, K.H., Lee, J.Y., Park, H.K., Yun, S.S., Jin, C.W., Han, S.K., Kyung, K.S., 2009. Residual characteristics of bifenthrin and imidacloprid in squash, Korean J. Pestic. Sci. 13, 79-86.
  15. Lee, H.D., Kyung, K.S., Kwon, H.Y., Ihm, Y.B., Kim, J.B., Park, S.S., Kim, J.E., 2004. Residue characteristics of hexaconazole and chlorothalonil in several fruits, Korean J. Pestic. Sci. 8, 107-111.
  16. Lee, H.D., Ihm, Y.B., Kwon, H.Y., Kim, J.B., Kyung, K.S., Kim, C.S., Oh, B.Y., Im, G.J., Kim, J.E., 2005. Dissipation pattern of pesticide sesidues in/on different varieties of lettuce applied with foliar spraying under greenhouse condition, Korean J. Pestic. Sci. 9, 354-358.
  17. Nilles, G.P., Zabik, M.J., 1974. Photochemisty of bioactive compounds. multiphase photodegradation of basalin, J. Agric. Food Chem. 22, 684-688. https://doi.org/10.1021/jf60194a048
  18. Pramanik, S.K., Saha, P., Bhattacharyya, A., Dhuri, A.V., 2012. Studies on the fate of ready-mix formulation of endosulfan and cypermethrin in tea, Bull. Environ. Contam. Toxicol. 89, 1016-1020. https://doi.org/10.1007/s00128-012-0808-3
  19. Ramesh, A., Balasubramanian, M., 1999. Kinetics and hydrolysis of fenamiphos, fipronil, and trifluralin in aqueous buffer solutions, J. Agric. Food Chem. 47, 3367-3371. https://doi.org/10.1021/jf980885m
  20. Tomlin, C.D.S., 2009. The Pesticide Manual, 229-230, 15th ed. British Crop Protection Council, USA.
  21. You Y.h., Lee Y.s., Kwon H.j., 2011. Reduction Factors of Pesticides with Different Physicochemical Properties under Washing and Cooking Conditions, Korean J. Food Sci. Technol. 43, 537-543. https://doi.org/10.9721/KJFST.2011.43.5.537